Preview

战略决策和风险管理

高级搜索

Технологии распределенной генерации: эмпирические оценки факторов применения

https://doi.org/10.17747/2078-8886-2018-1-32-48

摘要

Представлена оценка проблем и перспектив применения технологий распределенной генерации промышленными компаниями. Рассмотрено понятие распределенной генерации и состав включаемых в нее технологий, выявлены источники ключевых конкурентных преимуществ использования технологий распределенной генерации. Для анализа наиболее значимых факторов восприятия технологий распределенной генерации промышленными компаниями проведены глубинные полуструктурированные интервью с представителями 8 крупных промышленных компаний, анкетирование представителей 69 промышленных компаний. Для анализа использована регрессионная модель, позволяющая определить силу и значимость влияния отобранных факторов на принятие компаниями решения о собственной генерации.
Для проанализированных компаний возможность технического подсоединения, стоимость электроэнергии и воспринятые преимущества являются критическими факторами принятия решения об использовании технологий распределенной генерации. Фактор риска оказался незначим. В глубинных интервью респонденты объясняли это тем, что системы распределенной генерации сводят возникновение перечисленных неблагоприятных последствий к минимуму. Получение дешевой электрической и тепловой энергии, постепенное наращивание энергетических мощностей, равномерность капиталовложений с быстрым получением энергии для производственных и хозяйственных нужд на сегодняшний день возможно в связи с использованием энергоэффективных решений на базе технологий распределенной генерации.

关于作者

А. Трачук
ФГОБУ ВО «Финансовый университет при Правительстве Российской Федерации», АО «Гознак»
俄罗斯联邦


Н. Линдер
ФГОБУ ВО «Финансовый университет при Правительстве Российской Федерации»
俄罗斯联邦


参考

1. Володин Ю. В., Линдер Н. В. (2017). Тарифная политика и перекрестное субсидирование в электро- и теплоэнергетике // Стратегии бизнеса. № 1. С. 37–47.

2. Ворожихин В. (2013). Организационно-экономические механизмы развития энергетики. Saarbrücken: LAPLAMBERTAcademicPublishing. 245 с.

3. Гительман Л. Д. (2013). Экономика и бизнес в электроэнергетике. М.: Экономика. 432 с.

4. Гительман Л. Д., Бокарев Б. А., Гаврилова Т. Б. и др. (2015). Антикризисные решения для региональной энергетики. Экономика региона. № 3. С. 173–188.

5. Долматов И., Золотова И. (2015). Сколько стоит избыточная мощность генераторов? // ЭнергоРынок. № 8. С. 21–28.

6. Журавлева С. Н., Попов К. А., Лисицын И. М. (2014). Развитие системы ценообразования в строительстве объектов электроэнергетики // Надежность и безопасность энергетики. № 15. С. 42–49.

7. Кривошапка И. (2013). Распределенная генерация в России: конкурент большой энергетике или способ залезть в карман потребителей? // Энергетика и промышленность России. № 5 (217).

8. Климовец О. В., Зубакин В. А. (2016) Методы оценки эффективности инвестиций в собственную генерацию в условиях риска // Эффективное Антикризисное Управление. № 2 (95). С. 78–84.

9. Линдер Н. В., Трачук А. В. (2017) Влияние перекрестного субсидирования в электро- и теплоэнергетике на изменение поведения участников оптового и розничного рынков электро- и теплоэнергии // Эффективное Антикризисное Управление. № 2 (101). С. 78–86.

10. Обоскалов В. П., Паниковская Т. Ю. Управление энергопотреблением в конкурентном рынке электроэнергии // ФГБУН «Институт систем энергетики им. А. Л. Мелентьева» Сиб. отд. РАН. URL: http://www.sei.irk.ru / symp2010 / papers / RUS / S4-14r.pdf.

11. Основные результаты функционирования объектов электроэнергетики в 2015 году (2016) / Под ред. А. В. Черезова. М. 72 с.

12. Ряпин И. (2013) Риски «большой» электроэнергетики: уход потребителей на самостоятельное обеспечение электроэнергией как результат недоработки реформы / Энергетический центр Московской школы «Сколково». М. 117 с.

13. Селляхова О., Фатеева Е. (2012) Перекрестное субсидирование и социальная норма электропотребления // Эффективное Антикризисное Управление. № 6. (75). С. 32–79.

14. Стенников В. А., Воропай Н. И. (2014). Централизованная и распределенная генерация – не альтернатива, а интеграция // Известия РАН. Энергетика. № 1. С. 64–73.

15. Селляхова О., Тарновская О., Фатеева Е. и др. (2016) Виртуальная электростанция // Энергорынок. № 2 (137). С. 43–50.

16. Трачук А. В. (2010 а) Реформирование электроэнергетики и развитие конкуренции. М.: Магистр. 280 с.

17. Трачук А. В. (2010 б) Риски роста концентрации на рынке электроэнергии // Энергорынок. № 3. С. 28–32.

18. Трачук А. В. (2011) Реформирование естественных монополий: цели, результаты и направления развития. М.: Экономика. 320 с.

19. Трачук А. В., Линдер Н. В. (2017) Перекрестное субсидирование в электроэнергетике: подходы к моделированию снижения его объемов // Эффективное Антикризисное Управление. № 1 (100). С. 24–35.

20. Трачук А. В., Линдер Н. В., Золотова И. Ю. и др. (2017) Перекрестное субсидирование в электроэнергетике: проблемы и пути решения. СПб.

21. ТЭК России – 2015 (2016) // Аналитический центр при Правительстве Российской Федерации. URL:http://ac.gov.ru / files / publication / a / 9162.pdf.

22. Ховалова Т. В. (2017). Моделирование эффективности перехода на собственную генерацию //Эффективное Антикризисное Управление. № 3 (102). С. 44–57.

23. Федеральный закон «Об электроэнергетике» от 26.03.2003 № 35‑ФЗ // КонсультантПлюс. URL: http://www.consultant.ru / document / cons_doc_LAW_41502 / .

24. Assessment of Demand Response and Advanced Metering (2010) / Federal Energy Regulatory Commission, Washingtonю

25. Arndt U., WagnerU. (2003) EnergiewirtschaftlicheAuswirkungeneinesVirtuellenBrennstoffzellen-Kraftwerks// VDI-Berichte 1752, VDI-GET-FachtagungStationäreBrennstoffzellen am 01. / 02.04.2003. Düsseldorf: VDI–Verlag. S. 165–179.

26. Ao-Yang H., Zhe Z., Xiang-Gen Y. (2009) The Research on the Characteristic of Fault Current of Doubly-Fed Induction Generator // Asia-Pacific Power and Energy Engineering Conference; 27–31 March 2009. P. 1–4.

27. Berg A., Krahl S., Paulun T. (2008). Cost-efficient integration of distributed generation into medium voltage networks by optimized network planning // CIRED Seminar 2008: SmartGrids for Distribution. P. 1–4. URL: http://ieeexplore.ieee.org / document / 4591855 / .

28. Bhowmik A., Schatz J., Maitra A. et al. (2003). Determination of allowable penetration levels of distributed generation resources based on harmonic limit considerations // IEEE Transactions on Power Delivery. Vol. 18, № 2. P. 619–624.

29. Bresler St. F. (2009) Demand Response in the PJM Electricity Markets // PJM. Vol. 32, № 6. P. 1306–1315.

30. Carley S. (2009) Distributed generation: an empirical analysis of primary motivators // Energy Policy. Vol. 37. P. 1648–1659.

31. Damodaran A. (2008) Strategic Risk Taking: a framework for risk management. New Jersey: Pearson Prentice Hall. 388 p.

32. Davito B., Tai H., Uhlaner R. (2010) The smart grid and the promise of demand-side management // McKinsey & Company. URL: http://www.calmac.com / documents / MoSG_DSM_VF.pdf.

33. Demand Dispatch – Intelligent Demand for a More Efficient Grid (2011) / National Energy Technology Laboratory //U. S. Department of Energy Office of Electricity Delivery and Energy Reliability. URL: https://www.netl.doe.gov / File%20Library / Research / Energy%20Efficiency / smart%20grid / DemandDispatch_08112011.pdf.

34. Demand Side Response: A Discussion Paper (2010) / OFGEM. London.

35. Davis F. D. (1989) Perceived use fullness, perceived ease of use and user acceptance of information technology // MIS Quarterly. Vol. 13, № 3. P. 319–340.

36. Dondi, P., Bayoumi D., Haederli C. et al. (2002) Network integration of distributed power generation // Journal of Power Sources. Vol. 106. P. 1–9.

37. Estimating the Costs and Benefits of the Smart Grid. A Preliminary Estimate of the Investment Requirements and the Resultant Benefits of a Fully Functioning Smart Grid (2011) / The Electric Power Research Institute. Palo Alto.

38. European Technology Platform SmartGrids (2010). Brussels. URL: www.snartgrids.ur / documents / SmartGrids_SDD_FINAL_APRIL2010.pdf.

39. Evaluating Policies in Support of the Deployment of Renewable Power // IRENA. URL: http://www.irena.org / DocumentDownloads / Publications / Evaluating_policies_in _support_of_the_deployment_of_renewable_power.pdf.

40. Frankel D., Wagner A. (2017) Battery storage: The next disruptive technology in the power sector // McKinsey. URL: https://www.mckinsey.com / business-functions / sustainability-and-resource-productivity / our-insights / battery-storage-the-next-disruptive-technology-in-the-power-sector.

41. Frias, P., Gomez T., Cossent R. et al. (2009) Improvement in current European network regulation to facilitate the integration of distributed generation // Int. J. Electr. Power Energy Syst. Vol. 31. P. 445–451.

42. Faria P., Vale Z. (2011) Demand response in electrical energy supply: An optimal real time pricing approach // Energy. Vol. 36. P. 5374–5384.

43. Flick T., Morehouse J. (2011) Attacking Smart Meters // Securing the Smart Grid: Next Generation Power Grid Security. Boston: Syngress. P. 211–232.

44. GB Demand Response. Report2 Strategic Issues and Action Planning (2011) // KEMA, Commissioned by the Energy Network Association. URL: http://www.energynetworks.org / modx / assets / files / electricity / futures / smart_meters / KEMA_CUE_Report_Strategic_Issues_and_Action_Planning_March20 11.pdf.

45. Global trends in renewable energy investment (2013) / UNEP Collaborating Centre, Frankfurt School of Finance and Management. Frankfurt am Main. URL: http://fs-unep-centre.org / system / files / globaltrendsreportlowres_0.pdf.

46. Grubb M., Jamasb T., Pollitt M. G. (2008) Delivering a Low Carbon Electricity System. Technologies, Economics and Policy. Cambridge: Cambridge University Press. 536 p.

47. Gudi N., Wang L., Devabhaktuni V. (2012) A demand side management based simulation platform incorporating heuristic optimization for management of household appliances // Electrical Power and Energy Systems. Vol. 43. P. 185–193.

48. Haas R., Loew T. (2012) Die Auswirkungen der Energiewende auf die Strommärkte und die Rentabilität von KonventionellenKraftwerken // nachhaltigkeitsbericht. URL: http://www.nachhaltigkeit.wienerstadtwerke.at / fileadmin / user_upload / Downloadbereich / Haas-Loew-Auswirkungen-Energiewende-auf-Energiemaerkte2012.pdf.

49. Hansen C. J., Bower J. (2004) An economic evaluation of small-scale distributed electricity generation technologies / Oxford Institute for Energy Studies. Oxford, 2004.

50. Hogan W. (2010) Demand response pricing in organized wholesale markets / IRC Comments, Demand Reponse Notice of Proposed Rulemaking. FERC Docket RM10‑17‑000. URL:https://sites.hks.harvard.edu / fs / whogan / Hogan_IRC_DR_051310.pdf.

51. Implementation Proposal for The National Action Plan on Demand Response: Report to Congress Prepared by staff of the Federal Energy Regulatory Commission and the U. S. Department of Energy (2011) // Office of electricity delivery & energy reliability. URL: https://www.energy.gov / oe / downloads / implementation-proposal-national-action-plan-demand-response-july-2011

52. Ipakchi A., Albuyeh F. (2009). Grid of the future // IEEE Power and Energy Magazine. Vol. 7, № 2. P. 52–62.

53. Jasim S. Kunz C. Erneuerbare Energien im Strommarkt. Renews Kompakt // Agentur für Erneuerbare Energien. URL: http://www.unendlich-viel- energie.de / media / file / 276. AEE_RenewsKompakt_Strommarkt_dez13.pdf.

54. Jiang B., Fei Y. (2011) Dynamic Residential Demand Response and Distributed Generation Management in Smart Microgrid with Hierarchical Agents // Energy Procedia. Vol. 12. P. 76–90.

55. Kazemi A., Sadeghi M. (2009). Distributed generation allocation for loss reduction and voltage improvement // Power and Energy Engineering Conference, 2009. APPEEC 2009. Asia-Pacific.

56. Kumpulainen L., Kauhaniemi K. (2004). Analysis of the impact of distributed generation on automatic reclosing // Power Systems Conference and Exposition, 2004. IEEE PES. P. 603–608.

57. Li H., Leite H. (2008). Increasing distributed generation using automatic voltage reference setting technique // IEEE PES General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE. 20 Jul 2008–24 Jul 2008. P. 1–7.

58. Lujano-Rojas J. M., Monteiro C., Dufo-Lopez R. et al. (2012) Optimum residential load management strategy for real time pricing demand response programs // Energy Policy. Vol. 45. P. 671–679.

59. Markets (2010) / Mossavar-Rahmani Center for Business and Government, John F. Kennedy School of Government Harvard University. Cambridge, MA.

60. McDonald J. (2008) Adaptive intelligent power systems: active distribution networks // Energy Policy. Vol. 36. P. 4346–4351.

61. Mietzner D., Reger G. (2005) Advantages and disadvantages of scenario approaches for strategic foresight // International Journal of Technology Intelligence and Planning. Vol. 1, № 2. P. 220–239.

62. Modelling Load Shifting Using Electric Vehicles in a Smart Grid Environment: Working paper / OECD / IEA. (2010) // IEA. URL: https://www.iea.org / publications / freepublications / publication / modelling-load-shifing-using-electric-vehicles-in-a-smart-grid-environment.html.

63. Molla A., Licker P. S. (2002) PERM: A Modelof e-Commerce Adoption in Developing Countries // Issues and Trends of Information Technology Management in Contemporary Organizations / Ed. M. Khosrowpour. Seattle: Idea Group Publishing. P. 527–530.

64. Molla A., Licker P. S. (2005) Perceived e-Readiness Factors in e-Commerce Adoption: An Empirical Investigation in a Developing Country // International Journal of Electronic Commerce. Vol. 10, № 1. P. 83–110.

65. National Action Plan on Demand Response (2010) / Federal Energy Regulatory Commission, Washington.

66. Pontikakis D., Lin Y., Demirbas D. (2006) History matters in Greece: The adoption of Internet- enabled computers by small and medium sized enterprises // Inf. Econ. Policy. Vol. 18. P. 332–358.

67. Pepermans G., Driesen J., Haeseldonckx D. et al. (2005) Distributed Generation: definition, benefits and issues // Energy Policy. Vol. 33. P. 787–798.

68. Picciariello A, J. Reneses, P. Frias, L. Söder (2015). Distributed generation and distribution pricing: Why do we need new tariff design methodologies? // Electricpower systems research. Vol. 119. P. 370–376.

69. Picciariello A., Vergara C., Reneses J. et al. (2015). Electricity distribution tariffs and distributed generation: Quantifying cross-subsidies from consumers to prosumers // Utilities Policy. Vol. 37. P. 23–33.

70. Izadkhast S., Garcia-Gonzalez P., Frías P. et al. (2016). An aggregate model of plug-in electric vehicles including distribution network characteristics for primary frequency control // IEEE Transactions on Power Systems. Vol. 31, № 4. P. 2987–2998.

71. Samuelson S. (2010). Development and Analysis of a Progressively Smarter Distribution System // CSI RD&D Grant Solicitation Package: PV Grid Integration. UC–Irvine Advanced Power and Energy Program / PG&E. Leiden, theNetherlands 9–11 September 2010.

72. Seo H., Park M., Kim G. et al. (2007). A study on the performance analysis of the grid-connected pv-af system // Proceeding of International Conference on Electrical Machines and Systems. Toronto, Ontario, Canada 1–3 November 2007 / TheInstituteofElectricalandElectronicsEngineers, Inc. Toronto.

73. Subhes C. (2011) Bhattacharyya Energy Economics Concepts, Issues, Markets and Governance / University of Dundee. London: Springer. 645 p.

74. Wu J. (2009). Control technologies in distributed generation system based on renewable energy // 3rd International Conference on Power Electronics Systems and Applications.20–22 May 2009 / PESA. URL:http://ieeexplore.ieee.org / document / 5228652 / .

75. Walczuch R., VanBraven G., Lundgren H. (2000) Internet adoption barriers for small firms in the Netherlands //Eur. Manag. J. Vol.18. P. 561–572.

76. Yingyuan Z., Liuchen C., Meiqin M. et al. (2008). «Study of energy management system for distributed generation systems // 3rd International Conference on Deregulation and Restructuring and Power Technologies. P. 2465–2469. URL: http://ieeexplore.ieee.org / xpl / mostRecentIssue.jsp?punumber=4511470.

77. You S., Jin L., Hu J. et al. (2015). The Danish Perspective of Energy Internet: From Service-oriented Flexibility Trading to Integrated Design, Planning and Operation of Multiple Cross-sectoral Energy Systems // ZhongguoDianjiGongchengXuebao. Vol. 35, № 14. P. 3470–3481.

78. Zhang X. P. (2008). A framework for operation and control of smart grids with distributed generation // Power and Energy and Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Centuryю Pittsburgh. P. 1–5.


评论

供引用:


Trachuk A.V., Linder N.V. Technologies of the distributed generation: empirical evaluations of the innovations acceptance. Strategic decisions and risk management. 2018;(1):32-48. https://doi.org/10.17747/2078-8886-2018-1-32-48

浏览: 5224


ISSN 2618-947X (Print)
ISSN 2618-9984 (Online)