ASSESSMENT OF MARKET VOLATILITY DYNAMICS IN THE PERIODS OF SYSTEMIC INSTABILITIES
https://doi.org/10.17747/2078-8886-2013-1-70-75
Abstract
The new method of estimation of the values of the VaR using the modified GARCH model is presented, effectively assessing risks as in the quiet periods of financial market and at the same time the system instabilities.
To check the efficiency of the estimation of the VaR used for statistics, calculated as on total time interval, and in the sliding window. Results of local and global use of these statistics are in good agreement with each other, with the statistics computed in sliding window provide information about the uniformity of the effectiveness of calculating VaR. In particular, the effectiveness of the assessment of VaR practically did not change during the periods of the significant rise in prices in comparison with the «quiet» periods.
About the Authors
I. E. DenezhkinaRussian Federation
Candidate of Technical Sciences, Associate Professor, Head of Theory of Probability and Mathematical Statistics Chair, specialist in mathematical modeling of dynamic processes and management systems. Research interests: mathematical modeling in finance and economics.
G. N. Martirosyan
Russian Federation
The student of Applied Mathematics and Information Technologies Department. Research interests: mathematical modeling and analysis of complex systems.
V. YU. Popov
Russian Federation
Doctor of Physics and Mathematics, Professor, Head of Applied Mathematics Chair, specialist in mathematical modeling of complex processes and systems. Research interests: econophysics, mathematical modeling of developing systems.
A. B. Shapoval
Russian Federation
Doctor of Physics and Mathematics, Associate Professor, Professor of Applied Mathematics Chair, the senior researcher, the specialist in mathematical modeling of nonlinear stochastic processes. Research interests: mathematical modeling in finance and economics, complex systems, extreme weather conditions.
References
1. Гамза В. А., Вяткин В. Н. Управление банковскими рисками. Базель-2: революция идеи и эволюция действий. М.: Экономика, 2006. 207 с.
2. Денежкина И. Е., Попов В. Ю., Рубцов Б. Б. и др. «Пузыри» как предвестники крахов на финансовых рынках. М.: ИТКОР, 2012. 146 с.
3. Кобзарь А. И. Прикладная математическая статистика. М.: Физматлит, 2006. 816 с.
4. Лобанов А. А., Чугунов А. В. Энциклопедия финансового риск-менеджмента. Альпина Паблишер, 2009. 936 с.
5. Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. М.: Дело, 2004. 576 с.
6. Меньшиков И. С., Шелагин Д. А. Рыночные риски: модели и методы. М.: ВЦ РАН, 2010. 56 с.
7. Росси Э. Одномерные GARCH модели: обзор // Квантиль. 2010. № 8. С. 1–69.
8. Хейфец И. Тестирование распределений // Квантиль. 2011. № 9. С. 25–35.
9. Шаповал А. Б., Попов В. Ю. Численно-аналитический алгоритм оценки предсказуемости крахов // Математическое моделирование. 2011. № 23. С. 65–74.
10. Blanter E. M., Shnirman M. G., Le Mouel J.‑L. Solar variability: Evolution of correlation properties // Journal of Atmospheric and Solar-Terrestrial Physics. 2005. Vol. 67. P. 521–534.
11. Guedj O., Bouchaud J.‑P. Experts earning forecasts: bias, herding and gossamer information // International Journal of Theoretical and Applied Finance. 2005. Vol. 8. P. 933–946.
12. Shnirman M., Shapoval A. Variable predictability in deterministic dissipative sandpile // Nonlinear Processes in Geophysics. 2010. Vol. 17. P. 85–91.
Review
For citations:
Denezhkina I.E., Martirosyan G.N., Popov V.Yu., Shapoval A.B. ASSESSMENT OF MARKET VOLATILITY DYNAMICS IN THE PERIODS OF SYSTEMIC INSTABILITIES. Strategic decisions and risk management. 2013;(1):70-75. (In Russ.) https://doi.org/10.17747/2078-8886-2013-1-70-75