Preview

战略决策和风险管理

高级搜索

应用数字孪生提高采矿行业企业的运营效率

https://doi.org/10.17747/2618-947X-2023-3-292-311

摘要

文章探讨了数字孪生对采矿企业业务流程的影响。采矿企业可以从开采和采矿开始,一直到选矿和运输,优化其运营流程。通过建模不同场景,识别瓶颈并做出合理决策,企业可以提高资源利用效率,缩短停工时间,提高生产力,从而对其运营效率产生积极影响。通过数字孪生实施的预测性维护策略有助于提高效率,通过最小化设备意外故障和最大化无故障运行时间来实现。

数字孪生在采矿业中对企业运营效率产生影响的关键技术效应包括:在煤炭精矿化后增加产品产量和提高采矿设备生产线性能系数。这些效应导致了采矿企业运营效率的改善,增加了EBITDA和期末现金余额等指标。这种对运营效率的影响是通过增加产品产量和提高生产过程效率以及减少企业固定和运营成本实现的。

作者开发了一种评估数字孪生技术对采矿企业影响的方法。根据调查结果,确定了一系列关键生产流程,并预期了数字孪生技术的实施效果。

根据进行的实证研究,预期的数字孪生技术引入带来的EBITDA增长率为28%,而实际上研究期间的EBITDA增长率为21%。预期期末自由现金余额增长为5.93亿卢布

(增长130%),而实际上研究期间的自由现金余额增长为4.41亿卢布(增长96%)。

数字孪生技术在采矿企业的应用展示了提高运营效率和解决行业复杂问题的巨大潜力。

关于作者

V. A. Svadkovsky
‘Evolution’ 控股集团公司 (俄罗斯, 莫斯科)
俄罗斯联邦

′Evolution’ 控股集团公司的高级投资分析师 (俄罗斯,莫斯科)。

科研兴趣领域:数字技术及其应用效果,大型煤炭开采工业公司活动,运营活动效率。



参考

1. Боровков А.И., Рябов Ю.А., Марусева В.М. (2018). «Умные» цифровые двойники – основа новой парадигмы цифрового проектирования и моделирования глобально конкурентоспособной продукции нового поколения. Трамплин к успеху, 13: 26.

2. Гривс М. (2002). Виртуальная реальность и трансформация разработки продукции. Автоматизация сборки, 22(4): 312–319.

3. Исаев Р.А. (2023). Управление ИТ-архитектурой организации: проектирование, анализ, оптимизация и трансформация. М., Инфра-М.

4. Самосудов М.В. (2018). Концепция программы нового поколения для автоматизации деятельности. В: Шаг в будущее: искусственный интеллект и цифровая экономика. Революция в управлении: новая цифровая экономика или новый мир машин: материалы II Международного научного форума. Вып. 5. М., Издательский дом ГУУ, 40–50. https://guu.ru/wp-content/uploads/forum_bl_v55.pdf.

5. Alam K.M., Saddik A. (2017). El C2PS: A Digital Twin architecture reference model for the cloud-based cyberphysical systems. IEEE Access, 5: 2050.

6. Arenkov I., Tsenzharik M. (2019). Digital technologies in supply chain management. Atlantis Highlights in Computer Sciences, 1: 720–734.

7. Bao Q. (2020). Ontology-based modeling of part Digital Twin oriented to assembly. Journal of Engineering Manufacture, 13(4): 534–556.

8. Barricelli B.R., Casiraghi E., Fogli D. (2019). A Survey оn Digital Twin: Definitions, characteristics, applications, and design implications. IEEE Access, 7: 289–301.

9. Glaessgen E., Stargel D. (2012). The Digital Twin paradigm for future NASA and U.S. air force vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. https:// doi.org/10.2514/6.2012–1818.

10. Grieves M., Vickers J. (2017). Digital Twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches, 16(4): 85–113.

11. Karapetyan D., Mitrovic Minic S., Malladi K.T., Punnen A.P. (2020). Satellite downlink scheduling problem: A case study. Omega, 27(2): 115–129.

12. Kritzinger W., Karner M., Traar G., Henjes J., Sihn W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51: 334–346.

13. Merdan M., Moser T., Sunindyo W., Biffl S., Vrba P. (2022). Workflow scheduling using multi-agent systems in a dynamically changing environment. Journal of Simulation, 118–129.

14. Negri E., Fumagalli L., Macchi M. (2017). A review of the roles of Digital Twin in CPS-based production systems. Procedia Manufacturing, 11: 939–948.

15. Saddik A.E. (2018). A Digital Twin architecture reference model for the cloud-based cyber-physical systems. IEEE MultiMedia, 25(2): 87.

16. Stark R., Damerau T. (2019). Digital Twin, CIRP. In: Encyclopedia of Production Engineering. Berlin, Heidelberg, Springer, 66: 1.

17. Tao F., Qi Q., Liu A., Kusiak A., Zhou L. (2019). Digital Twins and cyber-physical systems. Toward smart manufacturing and Industry 4.0: Correlation and comparison. Engineering, 5(4), 653–661.

18. Trauer J., Schweigert-Recksiek S., Engel C., Spreitzer K., Zimmermann M. (2020). What is a Digital Twin? In: Design Conference, proceedings of the design society, 1: 757. DOI: 10.1017/dsd.

19. Zhuang Ñ., Liu J., Xiong H. (2018). Digital Twin – based smart production management and control framework for the complex product assembly shop-floor. International Journal of Advanced Manufacturing Technology, 96: 1149.


评论

供引用:


Svadkovsky V.A. 应用数字孪生提高采矿行业企业的运营效率. 战略决策和风险管理. 2023;14(3):292-311. https://doi.org/10.17747/2618-947X-2023-3-292-311

For citation:


Svadkovsky V.A. THE USE OF DIGITAL TWINS TO IMPROVE THE OPERATIONAL EFFICIENCY IN THE EXTRACTIVE INDUSTRIES. Strategic decisions and risk management. 2023;14(3):292-311. https://doi.org/10.17747/2618-947X-2023-3-292-311

浏览: 495


ISSN 2618-947X (Print)
ISSN 2618-9984 (Online)