工业企业数字化转型战略:引入智能制造技术的影响
https://doi.org/10.17747/2618-947X-2022-3-210-225
摘要
在工业企业数字化转型的现阶段引入智能制造技术的社会经济效应就其概括和系统化方面而言具有重要意义,它们对于工业现代化和建立新商业模式的任务也很重要。文章中提出的系统化是基于根据其作用方向分配三组社会经济影响。主要作用方向上的第一组影响导致工业企业成本降低。第二组影响主要导致收入增加:一些影响在短期和中期更为明显,其他影响长期有效,包括通过为工业公司创造长期独特的能力、可持续的竞争优势。第三组影响是关注范围更广,具有乘法效应以及积极外部性质的社会经济影响。
作为数据系统化的结果,作者在三组中确定了引入智能制造技术的 12、8 和 13 影响。由于目前对生产和社会转型交叉点的许多改进研究不足,作者指出研究引入智能生产技术的社会经济影响特别重要至于直接的生产效应,其中一些已经被科学界和专家界进行了足够详细的研究。在俄罗斯联邦经济和工业现代化任务的背景下,对复杂的智能制造技术的各种社会经济影响的系统化、分类、差异化和定量评估可以甚至在某种意义上应该成为绩效管理(Performance Management)和智能制造(Smart Manufacturing)交界处的单独学科领域。
参考
1. Багаутдинова Н.Г., Багаутдинова Р.А. (2018). Новые конкурентные преимущества в условиях цифровизации. Инновации, 8: 80–83.
2. Барвинок В.А., Смелов В.Г., Кокарева В.В., Малыхин А.Н. (2014). Прогрессивные технологии в машиностроении. Проблемы машиностроения и автоматизации, 4: 142–149.
3. Баурина С.Б. (2020). Технологии будущего: умные производства в промышленности. Вестник РЭУ им. Г.В. Плеханова, 17(2): 123–132. DOI: http://dx.doi.org/10.21686/2413-2829-2020-2-123-132
4. Глазков Б. (2016). Возможности индустриального интернета. Трамплин к успеху, 7: 24–27.
5. Зубрицкая И.А. (2018). Цифровая трансформация промышленных предприятий Республики Беларусь: экономическое содержание, виды и цели. Цифровая трансформация, (3): 5–13.
6. Иванов Д. (2016). Испытательный полигон для передовых производственных технологий. Трамплин к успеху, 7: 14–16.
7. Касяненко Е.О., Шимченко А.В., Салкуцан С.В. (2020). Сравнительный анализ традиционной модели производства и «умных фабрик». Журнал правовых и экономических исследований, 3: 7–17.
8. Мерзликина Г.С. (2021). Экономическая эффективность «Умного производства»: от целевых установок к регламентации. Вестник АГТУ. Экономика, 3.
9. Мясникова О.В. (2020). Теоретико-концептуальные подходы к формированию производственно-логистической системы «умного» производства как социокиберфизической системы. Экономика. Управление. Инновации, 1(7): 29–35.
10. Тарасова Н.Н., Шпарова П.О. (2021). Топ-15 цифровых технологий в промышленности. https://issek.hse.ru/mirror/pubs/share/494926392.pdf.
11. Титов С.А., Титова Н.В. (2022). Оценка экономических эффектов от кастомизации продукции российских промышленных предприятий. Стратегические решения и риск-менеджмент, 13(1): 26–36. DOI: 10.17747/2618-947X-2022-1-26-36.
12. Трачук А.В., Линдер Н.В., Тарасов И.В., Налбандян Г.Г., Ховалова Т.В., Кондратюк Т.В., Попов Н.А. (2018). Трансформация промышленности в условиях четвертой промышленной революции: монография. СПб.: Реальная экономика.
13. Трачук А.В., Линдер Н.В. (2020). Влияние технологий индустрии 4.0 на повышение производительности и трансформацию инновационного поведения промышленных компаний. Стратегические решения и риск-менеджмент, 2(11): 132–149.
14. Хейфец Б.А., Чернова В.Ю. (2019). Зарубежные программы умной реиндустриализации. ЭКО, 8: 118–140. DOI: 10.30680/ЕСО0131-7652-2019-8-118-140.
15. Цифровая Россия: новая реальность (2017). Digital McKinsey. https://www.mckinsey.com/ru/~/media/mckinsey/locations/europe%20and%20middle%20east/russia/our%20insights/digital%20russia/digital-russia-report.pdf.
16. Цифровая трансформация отраслей: стартовые условия и приоритеты (2021). М.: НИУ ВШЭ. https://conf.hse.ru/mirror/pubs/share/463148459.pdf?ysclid=l2yt4ijpgh.
17. Цифровая экономика 2022: краткий статистический сборник (2022). М.: НИУ ВШЭ. https://issek.hse.ru/mirror/pubs/share/552091260.pdf.
18. Щербаков Г.А. (2022). Глобальный дефицит полупроводниковых компонентов как источник современного кризиса мировой автомобильной промышленности. МИР (Модернизация. Инновации. Развитие), 13(2): 270–287. https://doi.org/10.18184/2079-4665.2022.13.2.270-287.
19. Alkaraan F., Albitar K., Hussainey K., Venkatesh V.G. (2022). Corporate transformation toward Industry 4.0 and financial performance: The influence of environmental, social, and governance (ESG). Technological Forecasting and Social Change, 175: 121423. https://doi.org/10.1016/j.techfore.2021.121423.
20. Anackovski F., Kostov M., Pasic R., Kuzmanov I. (2021). The impact of Industry 4.0 on education and future jobs (2021). In: 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST): 185-188. DOI: 10.1109/ICEST52640.2021.9483516.
21. Berg H., Le Blévennec K., Kristoffersen E., Strée B., Witomski A., Stein N., Bastein T., Ramesohl S., Vrancken K. (2020). Digital circular economy as a cornerstone of a sustainable European industry transformation. European Circular Economy Research Alliance (ECERA). https://ss-usa.s3.amazonaws.com/c/308476495/media/19365f987b483ce0e33946231383231/201023%20ECERA%20White%20Paper%20on%20Digital%20circular%20economy.pdf.
22. Berg L.P., Vance J.M. (2017). Industry use of virtual reality in product design and manufacturing: A survey. Virtual Reality, 21(1): 1–17.
23. Bughin J., Catlin T., Hirt M., Willmott P. (2018). Why digital strategies fail. McKinsey Quarterly, Jan.
24. Caccamo C., Pedrazzoli P., Eleftheriadis R., Magnanini M.C. (2022). Using the process digital twin as a tool for companies to evaluate the return on investment of manufacturing automation. Procedia CIRP, 107: 724–728. https://doi.org/10.1016/j.procir.2022.05.052.
25. Carvalho T.P., Soares F.A., Vita R., Francisco R.P., Basto J.P., Alcalá S.G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137: 106024. https://doi.org/10.1016/j.cie.2019.10602.
26. Deac C.N., Popa C.L., Ghinea M., Cotet C.E. (2017). Using augmented reality in smart manufacturing. In: Proceedings of the 28th DAAAM International Symposium: 0727–0732. Vienna, DAAAM International. 10.2507/28th.daaam.proceedings.102
27. Etz D., Frühwirth T., Kastner W. (2020). Flexible safety systems for smart manufacturing. In: 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA): 1123-1126. DOI: 10.1109/ETFA46521.2020.9211905.
28. Gajdzik B., Wolniak R. (2022). Smart production workers in terms of creativity and innovation: The implication for open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 8(2): 68. https://doi.org/10.3390/joitmc8020068.
29. Geerts R. (2016). The smart manufacturing elevator pitch, literally! MESA International’s. https://blog.mesa.org/2016/03/the-smart-manufacturing-elevator-pitch.html.
30. Grenčíková A., Kordoš M., Berkovič V. (2020). The impact of Industry 4.0 on jobs creation within the small and medium-sized enterprises and family businesses in Slovakia. Administrative Sciences, 10(3): 71. https://doi.org/10.3390/admsci10030071.
31. Guneshka D. (2021). Benefits of product personalization. https://www.iplabs.de/en/blog/blog/benefits-of-product-personalization.
32. Hinz P. (2013). Effects of mass customization on manufacturing. https://www.adaptalift.com.au/blog/2013-06-17-effects-of-mass-customisation-on-manufacturing.
33. Jagannathan S., Ra S., Maclean R. (2019). Dominant recent trends impacting on jobs and labor markets – an overview. International Journal of Training Research, 17(sup1): 1–11. DOI: 10.1080/14480220.2019.1641292.
34. Kanawaday A., Sane A. (2017). Machine learning for predictive maintenance of industrial machines using iot sensor data. In: 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), IEEE: 87–90. https://doi.org/10.1109/ICSESS.2017.8342870.
35. Kang H.S. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing Green Technology, 3(1): 111–128.
36. Kumar M., Shenbagaraman V.M., Shaw R.N., Ghosh A. (2021). Predictive data analysis for energy management of a smart factory leading to sustainability. In: Favorskaya M.N., Mekhilef S., Pandey R.K., Singh N. (eds.). Innovations in electrical and electronic engineering. Lecture notes in electrical engineering, 661. Singapore: Springer. https://doi.org/10.1007/978-981-15-4692-1_58.
37. Lage M.J., Filho M.G. (2010). Variations of the Kanban system: Literature review and classification. International Journal of Production Economics, 125(1): 13–21.
38. Lu Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6: 1–10.
39. Lu Y., Morris K.C., Frechette S. (2016). Current standards landscape for smart manufacturing systems. National Institute of Standards and Technology, 8107.
40. Mahoney T.C., Kota S. (2020). Smart manufacturing: Premier for small manufacturers, March. Report MF-TR-2020-0301. www.MForesight.org.
41. Martin N.L., Dér A., Herrmann C., Thiede S. (2020). Assessment of smart manufacturing solutions based on extended value stream mapping. Procedia CIRP, 93: 371–376. https://doi.org/10.1016/j.procir.2020.04.019.
42. Mathai P. (2015). Big data: Catalyzing performance in manufacturing. Wipro, Jan., 8. http://www.wipro.com/documents/Big%20Data.pdf.
43. Matulik P. (2008). Mass customization. Zlin: Tomas Bata University. http://195.178.95.140:8080/bitstream/handle/10563/6523/matul%C3%ADk_2008_dp.pdf?sequence=1&isAllowed=y.
44. Moon S., Becerik-Gerber B., Soibelman L. (2019). Virtual learning for workers in robot deployed construction sites. In: Advances in informatics and computing in civil and construction engineering. Proceedings of the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management. Springer, 889–895.
45. Negi S., Dhiman S., Sharma R.K. (2013). Basics, applications and future of additive manufacturing technologies: A review. Journal of Manufacturing Technology Research, 5(1/2): 75.
46. Odważny F., Szymańska O., Cyplik P. (2018). Smart factory: The requirements for implementation of the Industry 4.0 solutions in FMCG environment-case study. LogForum, 14(2): 257–267. http://doi.org/10.17270/J.LOG.2018.253.
47. Paelke V. (2014). Augmented reality in the smart factory: Supporting workers in an Industry 4.0. environment. In: Proceedings of the 2014 IEEE emerging technology and factory automation (ETFA), IEEE, 1–4.
48. Phuyal S., Bista D., Bista R. (2020а). Challenges, opportunities and future directions of smart manufacturing: A state of art review. Sustainable Futures, 2: 100023. https://doi.org/10.1016/j.sftr.2020.100023.
49. Phuyal S., Bista D., Izykowski J., Bista R. (2020b). Design and implementation of cost-efficient SCADA system for industrial automation. International Journal of Engineering and Manufacturing, 10(2): 15–28. 10.5815/ijem.2020.02.02.
50. Piller F.T., Moeslein K., Stotko C.M. (2004). Does mass customization pay? An economic approach to evaluate customer integration. Production Planning & Control, 15(4): 435–444. doi:10.1080/0953728042000238773.
51. Rahmanzadeh S., Pishvaee M.S., Govindan K. (2022). Emergence of open supply chain management: the role of open innovation in the future smart industry using digital twin network. Annals of Operations Research, preprint. https://doi.org/10.1007/s10479-021-04254-2.
52. Ren S., Zhang Y., Liu Y., Sakao T., Huisingh D., Almeida C.M. (2019). A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. Journal of Cleaner Production, 210: 1343–1365.
53. Riemer K., Totz C. (2003). The many faces of personalization. In: The Customer Centric Enterprise: 35–50. Berlin; Heidelberg: Springer Berlin Heidelberg.
54. Rovito M. (2022). Smart manufacturing: The future of making is digital. https://redshift.autodesk.com/smart-manufacturing/.
55. Schallmo D., Willams C.A., Boardman L. (2018). Digital transformation of business models-best practice, enabler, and roadmap. International Journal of Innovation Management, 21(8): 1740014. https://doi.org/10.1142/9781786347602_0005.
56. Strozzi F., Colicchia C., Creazza A., Noè C. (2017). Literature review on the ‘Smart Factory’concept using bibliometric tools. International Journal of Production Research, 55(22): 6572–6591. http://doi.org/10.1080/00207543.2017.1326643.
57. Ulas D. (2019). Digital transformation process and SMEs. Procedia Computer Science, 158: 662–671. https://doi.org/10.1016/j.procs.2019.09.101.
58. Wang X.V., Wang L. (2020). Safety strategy in the smart manufacturing system: A human robot collaboration case study. In: Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference, 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability. September 3. V002T07A026. ASME. https://doi.org/10.1115/MSEC2020-8427.
评论
供引用:
Ilkevich S.V. 工业企业数字化转型战略:引入智能制造技术的影响. 战略决策和风险管理. 2022;13(3):210-225. https://doi.org/10.17747/2618-947X-2022-3-210-225
For citation:
Ilkevich S.V. STRATEGY OF DIGITAL TRANSFORMATION OF INDUSTRIAL ENTERPRISES: THE EFFECTS OF THE INTRODUCTION OF SMART MANUFACTURING TECHNOLOGIES. Strategic decisions and risk management. 2022;13(3):210-225. https://doi.org/10.17747/2618-947X-2022-3-210-225