ВЛИЯНИЕ ПРЕДИКТИВНОЙ АНАЛИТИКИ НА ДЕЯТЕЛЬНОСТЬ КОМПАНИЙ
https://doi.org/10.17747/2078-8886-2018-3-108-113
摘要
Для анализа влияния предиктивной аналитики на деятельность компаний проведен обзор литературы. Предметно рассмотрены существующие виды аналитики на основе больших данных (Big Data): описательная, диагностическая, предписывающая и предиктивная аналитика. Рассмотрены основные инструменты предиктивной аналитики и представленные на рынке технические решения. Благодаря инструментам предиктивной аналитики компании могут анализировать и прогнозировать протекающие во времени процессы, выявлять тенденции, предвидеть изменения и, следовательно, более эффективно планировать будущее.
参考
1. Abbott D. (2014) Applied predictive analytics: Principles and techniques for the professional data analyst. Indianapolis, IN: John Wiley & Sons. 456 p.
2. Adomavicius G., Tuzhilin A. (2005) Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions// IEEE Transactions onKnowledge and Data Engineering. Vol. 17, № 6. P. 734–749.
3. Alstete J. W., Cannarozzi E. G. M. (2014) Big data in managerial decision-making: concerns and concepts to reduce risk. International Journal of Business Continuity and Risk Management. Vol. 5, № 1. P. 57–71.
4. Bag S., Anand N. (2015) Modelling barriers of sustainable supply chain network design using interpretive structural modelling: an insight from food processing sector in India. International Journal of Automation and Logistics. Vol. 1, № 3. P. 234–255.
5. Batra S. (2014) Big Data Analytics and its Reflections on DIKW Hierarchy // Review of Management. Vol. 4, № 1 / 2. P. 5.
6. Buytendijk F., Trepanier L. (2010) Predictive Analytics: Bringing the tools to the data / Oracle Corporation. Redwood Shores, CA.
7. Halper F. (2014) Predictive analytics for business advantage // TDWI Research. URL: http://tdwi.org / research / 2013 / 12 / best-practices-report-predictive-analytics-for-business-advantage.aspx?tc=page0
8. Harford T. (2014) Big data: A big mistake? //Significance. Vol. 11, № 5. P. 14–19.
9. Harris D. (2013) Why Apple, eBay, and Walmart have some of the biggest data warehouses you’ve ever seen // Gigaom.URL:https://gigaom.com / 2013 / 03 / 27 / why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen / .
10. Hashem I. A. T., Yaqoob I., Anuar N. B. et al. (2015) The rise of «big data» on cloud computing: Review and open research issues // Information Systems. Vol. 47. P. 98–115.
11. Jones-Farmer L. A., Ezell J. D., Hazen B. T. (2014) Applying control chart methods to enhance data quality // Technometrics. Vol. 56, № 1. P. 29–41.
12. Kanamoria Y., Matsuokab Y. (2008) Development of a Model for Estimation of Household Consumption and Environmental Load Generation // Refereed Sessions I–II. Monday 10 March. P. 347.
13. Marshall A., Mueck S., Shockley R. (2015). How leading organizations use big data and analytics to innovate // Strategy Leadership. Vol. 43, № 5. P. 32–39.
14. Myers S. A., Sharma A., Gupta P. et al. (2014) Information network or social network?: the structure of the twitter follow graph // Proceedings of the 23rd International Conference on World Wide Web. P. 493–498.
15. Nair P. R. (2012) Supply Chain Analytics // CSI Communications. Vol. 33, № 9. P. 11.
16. Tan K. H., Zhan Y., Ji G. et al. (2015) Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph // International Journal of Production Economics. Vol. 165. P. 223–233.
17. The Four V's of Big Data (2016) // IBM Big Data & Analitics Hub. URL: http://www.ibmbigdatahub.com / infographic / four-vs-big-data.
18. Weber G. M., Mandl K. D., Kohane I. S. (2014) Finding the missing link for big biomedical data // Jama. Vol. 311, № 24. P. 2479–2480.
19. Wu X., Zhu X., Wu G.‑Q. et al. Data mining with big data // IEEE transactions on knowledge and data engineering. 2014. Vol. 26, № 1. P. 97–107.
评论
供引用:
Khasanov A.R. IMPACT OF PREDICTIVE ANALYTICS ON THE ACTIVITIES OF COMPANIES. Strategic decisions and risk management. 2018;(3):108-113. https://doi.org/10.17747/2078-8886-2018-3-108-113