Preview

战略决策和风险管理

高级搜索

引入人工智能技术的决策因素及其对可持续竞争优势来源的转型

https://doi.org/10.17747/2618-947X-2024-2-134-151

摘要

基于人工智能(AI)的技术在管理任务(如决策制定)中越来越多地替代和补充人类。现代人工智能技术能够执行以前仅与人类思维相关的认知功能。根据资源基础观(RBV),人类的认知能力是难以复制的竞争优势来源,因为它们难以模仿。因此,人工智能技术能够改变竞争优势的来源。

本研究旨在探讨影响工业公司引入人工智能技术决策的因素,以及研究引入人工智能技术与替代和/或补充员工认知能力的效果及其对形成竞争优势的影响之间的关系。本研究基于147家工业公司的数据进行。采用两种模型对引入人工智能技术时出现的替代效应和互补效应进行了实证评估:随机效应Probit模型和固定效应Logit模型。通过这些模型,可以评估公司内部在将人工智能技术引入业务流程时资源变化的动态,从而追踪人工智能引入过程中资源替代的效果。

研究结果表明:(1)决定投资人工智能技术的因素包括:实施人工智能的能力、引入新技术的成本、公司整体的现有成本水平,以及对财务和经济效益的预期。(2) 预期通过人工智能技术减少操作时间、减少员工数量(因为减少了常规操作的工作量)、降低人力资源管理成本,以及加快新产品的开发和推广速度的公司,其投资人工智能的决策和投资强度显著更高。(3)  将人工智能引入市场营销和分析、研发和IT、销售和客户服务以及新产品开发,对形成不可复制的竞争优势影响最大。(4)在引入人工智能的过程中,同时出现了替代效应和互补效应,这改变了竞争优势的来源。虽然用人工智能的计算能力替代传统的行业特定人类认知能力会破坏现有优势,但通过人类和机器能力的互补,能够创建新的、持久的不可复制优势。本研究补充了资源基础观,表明异质的、不相关的资源(如人类和机器)也可以成为独特竞争优势的来源。

关于作者

A. V. Trachuk
俄罗斯联邦政府财政金融大学 (俄罗斯,莫斯科), Goznak股份公司 (俄罗斯,莫斯科)
俄罗斯联邦

经济学博士,教授,战略与创新发展教研室主任,“高级管理学院”系,俄罗斯联邦政府财政金融大学,Goznak股份公司的总经理(莫斯科,俄罗斯)。 ORCID: 0000-0003-2188-7192.

科研兴趣领域:公司战略与发展管理、创新、企业家精神及金融和实体经济部门的现代商业模式、电子商务的动态与发展、自然垄断的运营经验及发展前景。



N. V. Linder
俄罗斯联邦政府财政金融大学 (俄罗斯,莫斯科), Goznak股份公司 (俄罗斯,莫斯科)
俄罗斯联邦

经济学博士,教授,战略与创新发展教研室教授,“高级管理学院”系,俄罗斯联邦政府财政金融大学,Goznak股份公司的市场营销经理(莫斯科,俄罗斯)。ORCID: 0000-0002-4724-2344.

科研兴趣领域: 公司战略与发展管理、在第四次工业革命背景下工业公司发展战略的制定、创新与商业模式转型、电子商务的动态与发展、能源部门公司在第四次工业革命中的发展战略、俄罗斯公司进入国际市场的战略。



参考

1. Ружанская Л.С., Кузык М.Г., Симачев Ю.В., Федюнина А.А. (2023). Факторы применения сквозных цифровых технологий: вызовы для российских производителей. Вопросы экономики, 9: 5–28.

2. Agrawal A., Gans J.S., Goldfarb A. (2024). Artificial intelligence adoption and system‐wide change. Journal of Economics & Management Strategy, 33(2): 327–337.

3. Agrawal M., Zitnik M., Leskovec J. (2018). Large-scale analysis of disease pathways in the human interactome. In: Рacific Symposium on Biocomputing-2018, 111–122.

4. Argyres N.S., Zenger T.R. (2012). Capabilities, transaction costs, and firm boundaries. Organization Science, 23(6): 1643–1657.

5. Balasubramanian N., Ye Y., Xu M. (2022). Substituting human decision-making with machine learning: Implications for organizational learning. Academy of Management Review, 47(3): 448–465.

6. Barney J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1): 99–120.

7. Berry H., Kaul A., Lee N. (2021). Follow the smoke: The pollution haven effect on global sourcing. Strategic Management Journal, 42(13): 2420–2450.

8. Blakeley G. (2020). The Corona crash: How the pandemic will change capitalism. Verso Books.

9. Blohm I., Antretter T., Sirén C., Grichnik D., Wincent J. (2022). It’s a peoples game, isn’t it?! A comparison between the investment returns of business angels and machine learning algorithms. Entrepreneurship Theory and Practice, 46(4): 1054–1091.

10. Brynjolfsson E., McAfee A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & Company.

11. Chamorro-Premuzic T., Polli F., Dattner B. (2019). Building ethical AI for talent management. Harvard Business Review, 21: 1–15.

12. Choudhury P., Starr E., Agarwal R. (2020). Machine learning and human capital complementarities: Experimental evidence on bias mitigation. Strategic Management Journal, 41(8): 1381–1411.

13. Davenport T.H., Kirby J. (2016). Just how smart are smart machines? MIT Sloan Management Review, 57(3): 21.

14. Efron B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7(1): 1–26.

15. Helfat C.E., Peteraf M.A. (2015). Managerial cognitive capabilities and the microfoundations of dynamic capabilities. Strategic Management Journal, 36(6): 831–850.

16. Kunc M.H., Morecroft J.D. (2010). Managerial decision making and firm performance under a resource‐based paradigm. Strategic Management Journal, 31(11): 1164–1182.

17. Levinthal D.A., Wu B. (2010). Opportunity costs and non‐scale free capabilities: Profit maximization, corporate scope, and profit margins. Strategic Management Journal, 31(7): 780–801.

18. Mairesse J., Robin S. (2009). Innovation and Productivity: A Firm-level Analysis for French Manufacturing and Services using CIS3 and CIS4 data (1998–2000 and 2002–2004). Paris, CREST-ENSAE.

19. Milgrom P., Roberts J. (1990). Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica: Journal of the Econometric Society, 1255–1277.

20. Murray A., Rhymer J.E.N., Sirmon D.G. (2021). Humans and technology: Forms of conjoined agency in organizations. Academy of Management Review, 46(3): 552–571.

21. Newbert S.L. (2007). Empirical research on the resource‐based view of the firm: Аn assessment and suggestions for future research. Strategic Management Journal, 28(2): 121–146.

22. Noonan R. (2017). STEM Jobs: 2017 Update. ESA Issue Brief 02–17, US Department of Commerce.

23. Peteraf M.A., Bergen M.E. (2003). Scanning dynamic competitive landscapes: А market‐based and resource‐based framework. Strategic Management Journal, 24(10): 1027–1041.

24. Polidoro Jr.F., Toh P.K. (2011). Letting rivals come close or warding them off? The effects of substitution threat on imitation deterrence. Academy of Management Journal, 54(2): 369–392.

25. Rai A., Constantinides P., Sarker S. (2019). Next generation digital platforms: Тoward human-AI hybrids. Mis Quarterly, 43(1): iii-ix.

26. Raisch S., Krakowski S. (2021). Artificial intelligence and management: The automation-augmentation paradox. Academy of Management Review, 46(1): 192–210.

27. Shrestha Y.R., Ben-Menahem S.M., Von Krogh G. (2019). Organizational decision-making structures in the age of artificial intelligence. California Management Review, 61(4): 66–83.

28. Stadler C., Helfat C.E., Verona G. (2021). Technology usage and organizational performance in multi-unit firms transferring knowledge by transferring individuals: Innovative technology usage and organizational performance in multi-unit firms. Organization Science, Tuck School of Business Working Paper, 3779743.

29. Topol E.J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1): 44–56.

30. Verganti R., Vendraminelli L., Iansiti M. (2020). Innovation and design in the age of artificial intelligence. Journal of Product Innovation Management, 37(3): 212–227.

31. Wernerfelt B., Montgomery C.A. (1988). Tobin’s q and the importance of focus in firm performance. The American Economic Review, 246–250.

32. Wilson H.J., Daugherty P.R. (2018). Collaborative intelligence: Humans and AI are joining forces. Harvard Business Review, 96(4): 114–123.


评论

供引用:


Trachuk A.V., Linder N.V. 引入人工智能技术的决策因素及其对可持续竞争优势来源的转型. 战略决策和风险管理. 2024;15(2):134-151. https://doi.org/10.17747/2618-947X-2024-2-134-151

For citation:


Trachuk A.V., Linder N.V. DECISION-MAKING FACTORS FOR ADOPTING ARTIFICIAL INTELLIGENCE TECHNOLOGIES AND TRANSFORMING SOURCES OF SUSTAINABLE COMPETITIVE ADVANTAGE. Strategic decisions and risk management. 2024;15(2):134-151. https://doi.org/10.17747/2618-947X-2024-2-134-151

浏览: 604


ISSN 2618-947X (Print)
ISSN 2618-9984 (Online)