工业区域中作为能源效率管理工具的分布式发电工业系统
https://doi.org/10.17747/2618-947X-2024-2-100-117
摘要
将电网与基于天然气消费的小型分布式发电技术相结合,是提高电力系统可靠性和能源效率的关键创新方向之一。 大型能源消费者与分布式发电系统的同步运行构成了电力系统的新元素。该元素即工业微电网,与传统工业用电消费者相比,具备独特的电力系统运行模式管理能力。 本研究的目的是在电力和天然气市场条件下,制定在工业区使用微电网的理论和方法。对小型分布式发电使用趋势的分析表明,基于可再生能源的分布式能源在所有国家中并不都是经济上可行的。 例如,在俄罗斯,使用以天然气为燃料的分布式能源是最为切合实际的。研究在批发和零售电力市场上采购电力以及向区域供应商和商品交易所采购天然气的定价原则表明,管理能源需求波动可以显著影响工业企业和大型能源消费者所用的电力和天然气价格。 工业企业和小型分布式发电系统作为统一能源综合体的一部分,同时从统一能源系统消耗电力,通过分布式发电系统向企业内部网络和外部能源系统网络发电,并同时通过工业企业的燃气系统和分布式发电系统消耗天然气。在统一的主动能源综合管理系统框架内,同步工业企业与小型分布式发电系统的运行,可以降低企业能源资源采购的综合成本,提高设备的能源供应效率和可靠性。本文提出了影响主动能源综合体电力和天然气消费需求的因素体系,并开发了一种在与工业企业电力和天然气消费需求管理技术相结合的条件下,对主动能源综合体进行综合管理的模型。 所开发的主动能源综合体管理算法能够考虑主动能源综合体内电力和天然气需求变化的相互影响、电力和天然气市场的价格因素、工业企业内部负荷调节的限制要求、统一能源系统和统一供气系统的外部系统限制,以及满足主动能源综合体外部用户电力需求的可能性。研究结果可以在俄罗斯和全球工业企业开发、实施和管理主动能源综合体的过程中使用。
关于作者
A. P. Dzyuba俄罗斯联邦
俄罗斯第一任总统鲍里斯·叶利钦命名的乌拉尔联邦大学经济学博士,能源管理与工业企业系统主管教授。ORCID: 0000-0001-6319-1316; Researcher ID: AAF-5350-2019; SPIN: 1528-8220; Scopus Author ID: 631417.
科研兴趣领域: 工业和能源中的能源成本管理。
A. V. Semikolenov
俄罗斯联邦
俄罗斯车里雅宾斯克南乌拉尔国立大学高等经济与管理学院“经济与金融”系应考者。
科研兴趣领域: 工业中的主动能源综合体和微发电系统管理。
参考
1. Abdulkareem S.A., Haghifam M.R., Ghanizadeh Bolandi T. (2021). A novel approach for distributed generation expansion planning considering its added value compared with centralized generation expansion. Sustainable Energy, Grids and Networks, 25: 100417. DOI: 10.1016/j.segan.2020.100417.
2. Abramovich B.N., Sychev Yu.A. (2016). Methods and means of ensuring the energy safety of industrial enterprises with a continuous technological cycle. Industrial Energy, 9: 18-22. (In Russ.)
3. Anuradha K.B.J., Jayatunga U., Ranjit Perera H.Y. (2021). Loss-voltage sensitivity analysis based battery energy storage systems allocation and distributed generation capacity upgrade. Journal of Energy Storage, 36: 102357. DOI: 10.1016/j.est.2021.102357.
4. Baev I., Dzyuba A., Solovyeva I., Kuzmina N. (2018). Improving the efficiency of using small-distributed generation systems through mechanisms of demand management for electricity and gas. International Journal of Energy Production and Management, 3(4): 277-291. DOI: 10.2495/EQ-V3-N4-277-291.
5. Baghbanzadeh D., Salehi J., Samadi Gazijahani F., Shafie-khah M., Catalão J.P.S. (2021). Resilience improvement of multi-microgrid distribution networks using distributed generation. Sustainable Energy, Grids and Networks, 27: 100503. DOI: 10.1016/j.segan.2021.100503.
6. Belmahdi B., El Bouardi A. (2020). Simulation and optimization of microgrid distributed generation: A case study of University Abdelmalek Essaâdi in Morocco. Procedia Manufacturing, 46: 746-753. DOI: 10.1016/j.promfg.2020.03.105.
7. Beltrán J.C., Aristizábal A.J., López A., Castaneda M., Zapata S., Ivanova Y. (2020). Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems. Energy Reports, 6(sup. 3): 88-104. DOI: 10.1016/j.egyr.2019.10.025.
8. Chulyukova M.V. (2019). Features of modelling of processes of selection isolated work of power supply systems with distributed generation in emergency conditions. In: Energy: management, quality and efficiency of the use of energy resources. Proceedings of the IX International Scientific and Technical Conference, 212-216. (In Russ.)
9. Craig M.T., Jaramillo P., Hodge B.-M., Williams N.J., Severnini E. (2018). A retrospective analysis of the market price response to distributed photovoltaic generation in California. Energy Policy, 121: 394-403. DOI: 10.1016/j.enpol.2018.05.061.
10. Dormidonov P.V. (2019). Distributed energy using cogeneration technology. In: Youth Scientific Forum. Collected papers of XXXIV Student International Scientific and Practical Conference, 24-26. (In Russ.)
11. Dzyuba A.P. (2020). Theory and methodology of energy demand management in industry: Monograph. Chelyabinsk, SUSU Publishing. (In Russ.)
12. Dzyuba A.P., Semikolenov A.V. (2021a). Management of energy costs of industrial enterprises connected to electric grid of electric power producers. Bulletin of Kemerovo State University. Series: Political, Sociological, and Economic Sciences, 2(20). DOI: 10.21603/2500-3372-2021-6-2-198-207. (In Russ.)
13. Dzyuba A.P., Semikolenov A.V. (2021b). The relevance of the use of active energy complexes in the Russian industry. Problems of Economics and Management of Oil and Gas Complex, 9(201): 31-40. DOI: 10.33285/1999-6942-2021-9(201)-31-40. (In Russ.)
14. Dzyuba A., Solovyeva I. (2020a). Demand-side management in territorial entities based on their volatility trends. International Journal of Energy Economics and Policy, 10(1): 302-315. DOI: 10.32479/ijeep.8682.
15. Dzyuba A., Solovyeva I. (2020b). Price-based demand-side management model for industrial and large electricity consumers. International Journal of Energy Economics and Policy, 10(4): 135-149. DOI: 10.32479/ijeep.8982.
16. Dzyuba A.P., Solovyeva I.A. (2021a). Energy demand management in the global economic space. Chelyabinsk, SUSU Publishing. (In Russ.)
17. Dzyuba A.P., Solovyeva I.A. (2021b). Prospects for energy demand management in Russian regions. Economy of Region, 2(17): 502-519. DOI: 10.17059/ekon.reg.2021-2-11. (In Russ.)
18. Dzyuba A.P., Solovyeva I.A., Semikolenov A.V. (2022). Prospects of introducing microgrids in Russian industry. Journal of New Economy, 23(2): 80-101. DOI: 10.29141/2658-5081-2022-23-2-5.
19. Eljrushi G.S., Alrtami R.S., Ben-Gheshir O.M., Elhaddad O.I. (2019). Distributed power generation for scattered population. Alternative Energy and Ecology, 19-21(303-305): 12-16. (In Russ.)
20. Garlet B.T., Duarte Ribeiro J.L., Souza Savian F., Siluk J.C.M. (2019). Paths and barriers to the dffusion of distributed generation of photovoltaic energy in Southern Brazil. Renewable and Sustainable Energy Reviews, 111: 157-169. DOI: 10.1016/j.rser.2019.05.013.
21. Howlader H.O.R., Matayoshi H., Senjyu T. (2015). Distributed generation incorporated with the thermal generation for optimum operation of a smart grid considering forecast error. Energy Conversion and Management, 96: 303-314. DOI: 10.1016/j.enconman.2015.02.087.
22. Howlader H.O.R., Matayoshi H., Senjyu T. (2016). Distributed generation integrated with thermal unit commitment considering demand response for energy storage optimization of smart grid. Renewable Energy, 99: 107-117. DOI: 10.1016/j.renene.2016.06.050.
23. Ilyushin P.V., Berezovsky P.K., Filippov S.P. (2019). Formation of technical requirements for generating settings of distributed generation to participate in voltage regulation. In: Voropai N.I. (ed). Methodological issues of studying the reliability of large energy systems. Irkutsk, L.A. Melentyev Energy Systems Institute of the Siberian Branch of RAS, 64-73. (In Russ.)
24. Kakran S., Chanana S. (2018). Smart operations of smart grids integrated with distributed generation: A review. Renewable and Sustainable Energy Reviews, 81, part 1: 524-535. DOI: 10.1016/j.rser.2017.07.045.
25. Khudyakov K.I., Chirov D.A., Smirnov A.Yu., Yakovlev S.O. (2020). Problems of integration of distributed generation and centralised power supply system. In: Priority directions of the innovation activity in the industry. Collection of scientific articles upon the results of the Third International Scientific Conference, 162-164. (In Russ.)
26. Kuchin P.G., Ragutkin A.V., Shigaev I.A. (2010). Distributed generation as a way of effective power supply to consumers. In: Energy and resource conservation - XXI century. A collection of materials of the VIII International Scientific and Practical Internet Conference, 68-69. (In Russ.)
27. Kumar M., Kumar A., Sandhu K.S. (2018). Impact of distributed generation on nodal prices in hybrid electricity market. International Conference on Processing of Materials, Minerals and Energy, 5(1), part 1: 830-840. DOI: 10.1016/j.matpr.2017.11.154.
28. Lachkov G.G., Fedyaev A.V. (2015). Improving the energy supply of the region by using distributed cogeneration. Bulletin of the Irkutsk State Technical University, 11(106): 165-171. (In Russ.)
29. Li Z., Chen G. (2022). Fixed-time consensus based distributed economic generation control in a smart grid. International Journal of Electrical Power & Energy Systems, 134: 107437. DOI: 10.1016/j.ijepes.2021.107437.
30. Lin Q., Liu Li-J., Yuan M., Ge L.-J., Wang Y.-H., Zhang M. (2021). Choice of the distributed photovoltaic power generation operating mode for a manufacturing enterprise: Surrounding users vs a power grid. Journal of Cleaner Production, 293: 126199. DOI: 10.1016/j.jclepro.2021.126199.
31. Liu S., Bie Z., Liu F., Li Z., Li G., Wang X. (2019). Policy implication on distributed generation PV trading in China. Energy Procedia, 159: 436-441. DOI: 10.1016/j.egypro.2018.12.043.
32. Lukyanov M.R. (2020). The operating modes of intellectual energy systems, with a high share of distributed generation. In: Innovative scientific research: Theory, methodology, practice. Collection of articles of the XXI International Scientific and Practical Conference, 34-36. (In Russ.)
33. Makarova A.S., Pankeshina T.G., Khorshev A.A. (2018). Approaches to assessing the competitiveness of distributed cogeneration sources in comparison with large thermal power plants. In: Management of large-scale system development. Proceedings of 2018 11th International Conference ‘Under the general editorship’, 468-469. (In Russ.)
34. Martínez S.D.F., Campos A., Villar J., Rivier M. (2021). Joint energy and capacity equilibrium model for centralized and behind-the-meter distributed generation. International Journal of Electrical Power & Energy Systems, 131: 107055. DOI: 10.1016/j.ijepes.2021.107055.
35. Matos S.P.S., Vargas M.C., Fracalossi L.G.V., Encarnação L.F., Batista O.E. (2021). Protection philosophy for distribution grids with high penetration of distributed generation. Electric Power Systems Research, 196: 107203. DOI: 10.1016/j.epsr.2021.10720.
36. Menke J.-H., Bornhorst N., Braun M. (2019). Distribution system monitoring for smart power grids with distributed generation using artificial neural networks. International Journal of Electrical Power & Energy Systems, 113: 472-480. DOI: 10.1016/j.ijepes.2019.05.057.
37. Myshkina L.S. (2019). Modeling the regional electric network and increasing reliability due to new technologies. Chief Power Engineer, 9: 17-24. (In Russ.)
38. Nakada T., Shin K., Managi S. (2016). The effect of demand response on purchase intention of distributed generation: Evidence from Japan. Energy Policy, 94: 307-316. DOI: 10.1016/j.enpol.2016.04.026.
39. Nalbandian G.G., Zholnerchik S.S. (2018). Key factors of effective application of distributed generation technologies in industry. Strategic Decisions and Risk Management, 1(104): 80-87. (In Russ.)
40. Nejad H.C., Tavakoli S., Ghadimi N., Korjani S., Nojavan S., Pashaei-Didani H. (2019). Reliability based optimal allocation of distributed generations in transmission systems under demand response program. Electric Power Systems Research, 176: 105952. DOI: 10.1016/j.epsr.2019.105952.
41. Nepomnyashchiy V.A., Ilyushin P.V. (2013). New approaches to ensure the reliability of power supply to consumers of electric energy. Safety and Reliability of Power Industry, 4(23): 14-25. (In Russ.)
42. Nurmukhametov A.F. (2020). Distributed generation. Operating modes of autonomous power supply systems. In: Problems and prospects for the development of the electric power industry and electrical engineering. Materials of the II All-Russian Scientific and Practical Conference, 355-358. (In Russ.)
43. Pivnyuk V.A. (2008). Innovative energy technologies for transforming energy and distributed cogeneration - The basis of the energy of the future. Integral, 3: 42-43. (In Russ.)
44. Pogodin A.A. (2019). Distributed generation in power supply schemes for industrial production. In: Current trends in the development of engineering and technology in Russia and abroad: Realities, opportunities, prospects. Nizhny Novgorod, State Engineering and Economic Institute (Knyaginino), 2: 230-232. (In Russ.)
45. Poudineh R., Jamasb T. (2014). Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement. Energy Policy, 67: 222-231. DOI: 10.1016/j.enpol.2013.11.073.
46. Ragutkin A.V. (2013). Distributed generation as a way of effective and reliable power supply to consumers. Electrical Equipment: Operation and Repair, 7: 17-19. (In Russ.)
47. Rahiminejad A., Vahidi B., Hejazi M.A., Shahrooyan S. (2016). Optimal scheduling of dispatchable distributed generation in smart environment with the aim of energy loss minimization. Energy, 116, part 1: 190-201. DOI: 10.1016/j.energy.2016.09.111.
48. Rytsova A.V. (2018). Influence of distributed generation on the mode of operation of the power system. Bulletin of Modern Research, 12.5(27): 247-249. (In Russ.)
49. Safonov A.I., Lipikhin E.G., Shevelev D.V. (2016). Overview of the market for low-power cogeneration plants. Actual Problems of the Humanities and Natural Sciences, 1(11): 94-99. (In Russ.)
50. Samper M., Coria G., Facchini M. (2021). Grid parity analysis of distributed PV generation considering tariff policies in Argentina. Energy Policy, 157: 112519. DOI: 10.1016/j.enpol.2021.112519.
51. Sandhya K., Chatterjee K. (2021). A review on the state of the art of proliferating abilities of distributed generation deployment for achieving resilient distribution system. Journal of Cleaner Production, 287: 125023. DOI: 10.1016/j.jclepro.2020.125023.
52. Sichevsky A.S., Dolgopol T.L. (2020). Renewable energy as distributed generation of remote settlements. In: Problems and prospects for the development of the electric power industry and electrical engineering. Materials of the II All-Russian Scientific and Practical Conference, 391-394. (In Russ.)
53. Tepchikov R.B., Stashko V.I. (2019). Distributed generation in electric power systems. In: Science and Youth. Materials of XVI All-Russian Scientific and Technical Conference of Students, Post-graduates and Young Scientists, 1109-1111. (In Russ.)
54. Valencia A., Hincapie R.A., Gallego R.A. (2021). Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium-low voltage distribution networks. Journal of Energy Storage, 34: 102158. DOI: 10.1016/j.est.2020.102158.
55. Wang Y., Huang Y., Wang Y., Zeng M., Li F., Wang Y., Zhang Y. (2018). Energy management of smart micro-grid with response loads and distribute generation considering demand response. Journal of Cleaner Productin, 197, part 1: 1069-1083. DOI: 10.1016/j.jclepro.2018.06.271.
56. Yanine F., Sanchez-Squella A., Parejos A., Barrueto A., Rother H., Kumar Sahoo S. (2019). Grid-tied distributed generation with energy storage to advance renewables in the residential sector: Tariff analysis with energy sharing innovations, part I. Procedia Computer Science, 162: 111-118. DOI: 10.1016/j.procs.2019.11.265.
57. Yu H., Hong B., Luan W., Huang B., Semero Y.K., Tesfaye Eseye A. (2018). Study on business models of distributed generation in China. Global Energy Interconnection, 1(2): 162-171. DOI: 10.14171/j.2096-5117.gei.2018.02.008.
58. Zhang L., Chen C., Wang Q., Zhou D. (2021). The impact of feed-in tariff reduction and renewable portfolio standard on the development of distributed photovoltaic generation in China. Energy, 232: 120933. DOI: 10.1016/j.energy.2021.120933.
评论
供引用:
Dzyuba A.P., Semikolenov A.V. 工业区域中作为能源效率管理工具的分布式发电工业系统. 战略决策和风险管理. 2024;15(2):100-117. https://doi.org/10.17747/2618-947X-2024-2-100-117
For citation:
Dzyuba A.P., Semikolenov A.V. INDUSTRIAL MICROGRIDS AS TOOLS FOR MANAGING THE ENERGY EFFICIENCY IN INDUSTRIAL REGIONS. Strategic decisions and risk management. 2024;15(2):100-117. https://doi.org/10.17747/2618-947X-2024-2-100-117