Preview

战略决策和风险管理

高级搜索

工业企业数字化转型指数构建和解释的概念性方面

https://doi.org/10.17747/2618-947X-2024-1-30-45

摘要

本文的重点是工业企业数字化转型评估指数的形成、构建、测量和动态跟踪问题。 本文分析了三个指数的组合特征、优势和局限性,这些指数在工业数字化转型或数字成熟度水平的行业比较(至少是大类行业)方面具有相当好的聚焦度,并且已经编制了至少几年时间:麦肯锡全球研究院的《工业数字化指数》、世界经济论坛的《智慧产业准备指数》、和高等经济学院的《经济和社会领域行业数字化指数》。 本文的主要论点是有必要开发一个统一的、连续的且与俄罗斯实践相关的工业企业数字化转型指数,同时借鉴国际和俄罗斯项目中研究分析团队在数字化评估指数的概念和方法开发方面积累的所有积极经验。同时,作者指出,应避免基于滞后的统计数据进行回顾性指数构建和仅关注已成熟的数字技术。非常重要的是在测量工业企业数字化转型水平的方法中纳入战略性方向。 简单地将数字技术应用指标进行粗略分组并称之为某些指数或子指数作为数字化转型的主要标志是不够的。从统计学的角度来看,这种方法可能是完全正确、可靠且可验证的。然而,这引发了一个关于在商业模式演变,特别是在工业领域背景下,分组技术的生产潜力的问题。在构建任何数字成熟度、数字化和数字化转型的指数和评估方法时,最好面对某些前沿技术潜力中不可避免的不确定性,尝试预测技术因素与未来商业模式新领域的交汇。采用这种方法,工业企业的数字化转型指数获得了前瞻性和工具性功能,因为它们在某种意义上成为了路线图。这些指数有助于提升各行业和工业部门公司及其利益相关者、协会、政府机构(尤其是负责数字化和工业政策的机构)在实现更高阶段数字成熟度方面的战略视野。

关于作者

S. V. Ilkevich
俄罗斯联邦政府财政金融大学 (俄罗斯,莫斯科)
俄罗斯联邦

经济学副博士,战略与创新发展系副教授,管理研究与咨询研究所主要研究员, 俄罗斯联邦政府财政金融大学 (俄罗斯,莫斯科) 。 ORCID: 0000-0002-8187-8290; Scopus ID: 56028209600; SPIN: 6655-7300.

科研兴趣领域: 创新与商业模式、国际业务、行业数字化转型、共享经济、股票市场、投资组合、体验经济、教育国际化。



参考

1. Бодрунов С.Д. (2018). Конвергенция технологий – новая основа для интеграции производства, науки и образования. Экономическая наука современной России, 80(1): 8–19.

2. Васильковский С.А., Ковалева Г.Г., Абдрахманова Г.И., Вишневский К.О., Зинина Т.С., Рудник П.Б. (2022). Индекс цифровизации отраслей экономики и социальной сферы. Цифровая экономика, 63. www.issek.hse.ru.

3. Гилева Т.А. (2019). Цифровая зрелость предприятия: методы оценки и управления. Вестник УГНТУ. Наука, образование, экономика. Серия: Экономика, 1(27). https://cyberleninka.ru/article/n/tsifrovaya-zrelost-predpriyatiya-metody-otsenki-i-upravleniya.

4. Горбачев М.И., Петренко А.П., Карпунин Н.А. (2019). Международный опыт определения уровня развития цифровой экономики с помощью индексов. Управление рисками в АПК, 2(30): 69–82. https://doi.org/10.53988/24136573-2019-02-05.

5. Илькевич С.В. (2022). Эвристическая модель «эффективного интерпретатора» в портфельных инвестициях в высокотехнологичные компании. Стратегические решения и риск-менеджмент, 13(2): 116–128. https://doi.org/10.17747/2618-947X-2022-2-116-128.

6. Илькевич С.В. (2023). Интегративная теория жизненного цикла технологий четвертой промышленной революции. Экономические науки, 10(227): 44–54. https://doi.org/10.14451/1.227.44.

7. Кобзев В.В., Бабкин А.В., Скоробогатов А.С. (2022). Цифровая трансформация промышленных предприятий в условиях новой реальности. π-Economy, 15(5): 7–27. https://doi.org/10.18721/JE.15501.

8. Печаткин В.В., Вильданова Л.М. (2021). Уровень цифровизации видов экономической деятельности как фактор их конкурентоспособности в условиях пандемии. Вопросы инновационной экономики, 11(1): 47–60. https://doi.org/10.18334/vinec.11.1.111893.

9. Трачук А.В., Линдер Н.В. (2020). Влияние технологий индустрии 4.0 на повышение производительности и трансформацию инновационного поведения промышленных компаний. Стратегические решения и риск-менеджмент, 2(11): 132–149. https://doi.org/10.17747/2618-947X-2020-2-132-149.

10. Трачук А.В., Линдер Н.В. (2023). Внедрение цифровых платформ промышленными компаниями как источник конкурентных преимуществ. Стратегические решения и риск-менеджмент, 14(1): 18–32. https://doi.org/10.17747/2618-947X-2023-1-18-32.

11. Acciarini C., Borelli F., Capo F., Cappa F., Sarrocco C. (2022). Can digitalization favour the emergence of innovative and sustainable business models? A qualitative exploration in the automotive sector. Journal of Strategy and Management, 15( 3): 335–352. https://doi.org/10.1108/JSMA-02-2021-0033.

12. Anackovski F., Kostov M., Pasic R., Kuzmanov I. (2021). The impact of Industry 4.0 on education and future jobs. In: 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies, 185–188. https://doi.org/10.1109/ICEST52640.2021.9483516.

13. Atkins C., White O., Padhi A., Ellingrud K., Madgavkar A., Neary M. (2023). Rekindling US productivity for a new era. McKinsey Global Institute, February 16. https://www.mckinsey.com/mgi/our-research/rekindling-us-productivity-for-a-new-era.

14. Bonini V., Galelli P., Minetto A., Morbiducci R., Delponte I. (2019). Effects of the digital transformation on the contemporary city project. Rivista Tema, 5(1): 61–71. https://doi.org/10.30682/tema0501f.

15. Bota-Avram C. (2023). Agenda for future research and conclusions. In: Science mapping of digital transformation in business. SpringerBriefs in business. Cham, Springer. https://doi.org/10.1007/978-3-031-26765-9_6.

16. Chen X., Han T. (2019). Disruptive technology forecasting based on Gartner Hype Cycle. In: 2019 IEEE Technology & Engineering Management Conference. Atlanta, GA, 1–6. https://doi.org/10.1109/TEMSCON.2019.8813649.

17. Dedehayir O., Steinert M. (2016). The hype cycle model: A review and future directions. Technological Forecasting and Social Change, 108: 28–41. https://doi.org/10.1016/j.techfore.2016.04.005.

18. Ferreira F., Faria J., Azevedo A., Marques A.L. (2021). Product lifecycle management enabled by industry 4.0 Technology. Advances in Transdisciplinary Engineering, 3(Advances in Manufacturing Technology): 349–354. https://doi.org/10.3233/978-1-61499-668-2-349.

19. Gärtner B. (2018). Industry 4.0 maturity index: A new index provides companies with guidance for carrying out the transformation to Industry 4.0. ASSEMBLY, November 6. https://www.assemblymag.com/articles/94546-industry-40-maturity-index.

20. Global smart industry readiness index initiative (2021). World Economic Forum. https://www.weforum.org/projects/global-smart-industry-readiness-index-initiative/.

21. Gordon R.J. (2018). Why has economic growth slowed when innovation appears to be accelerating? NBER, Working Paper w24554. https://ssrn.com/abstract=3170773.

22. Grenčíková A., Kordoš M., Berkovič V. (2020). The impact of Industry 4.0 on jobs creation within the small and medium-sized enterprises and family businesses in Slovakia. Administrative Sciences, 10(3): 71. https://doi.org/10.3390/admsci10030071.

23. Guo X., Li M., Wang Y., Mardani A. (2023). Does digital transformation improve the firm’s performance? From the perspective of digitalization paradox and managerial myopia. Journal of Business Research, 163: 113868. https://doi.org/10.1016/j.jbusres.2023.113868.

24. Kim B. (2003). Managing the transition of technology life cycle. Technovation, 23(5): 371–381. https://doi.org/10.1016/S0166-4972(02)00168-2.

25. Kondo Y., Asatani K., Sakata I. (2022). Evaluating emerging technologies on the Gartner Hype Cycle by network analysis: A display technology case study. In: Portland International Conference on Management of Engineering and Technology. Portland, OR, 1–11. https://doi.org/10.23919/PICMET53225.2022.9882631.

26. Kregel I., Koch J., Plattfaut R. (2021). Beyond the hype: Robotic process automation’s public perception over time. Journal of Organizational Computing and Electronic Commerce, 31(2): 130–150. https://doi.org/10.1080/10919392.2021.1911586.

27. Nambisan S., Wright M., Feldman M. (2019).The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Research Policy, 48(8): 103773. https://doi.org/10.1016/j.respol.2019.03.018.

28. Priestley M., Sluckin T.J., Tiropanis T. (2020). Innovation on the web: The end of the S-curve? Internet Histories, 4(4): 390–412.

29. Souhail S., Ibtissam E.H., Anass C. (2023). Maturity models as a support for Industry 4.0 implementation: Literature review.

30. In: Masrour T., El Hassani I., Barka N. (eds.). Artificial intelligence and industrial applications. Lecture notes in networks and systems. Cham, Springer, vol. 771. https://doi.org/10.1007/978-3-031-43524-9_9.

31. Suarez-Fernandez de Miranda S., Aguayo-González F., Salguero-Gómez J., Ávila-Gutiérrez M.J. (2020). Life cycle Engineering 4.0: A proposal to conceive manufacturing systems for Industry 4.0 Centred on the human Factor (DfHFinI4.0). Applied Sciences, 10(13): 4442. https://doi.org/10.3390/app10134442.

32. Taylor M., Taylor A. (2012). The technology life cycle: Conceptualization and managerial implications. International Journal of Production Economics, 140(1): 541–553. https://doi.org/10.1016/j.ijpe.2012.07.006.

33. The Global smart industry readiness initiative: Manufacturing transformation insights report 2022 (2022). World Economic Forum, White Paper, February. https://www3.weforum.org/docs/WEF_The_Global_Smart_Industry_Readiness_Index_Initiative_2022.pdf.

34. Titov S., Trachuk A., Linder N., Pathak R.D., Samson D., Husain Z., Sushil S. (2023). Digital transformation enablers in high-tech and low-tech companies: A comparative analysis. Australian Journal of Management, 48(4): 801–843. https://doi.org/10.1177/03128962231157102.

35. Unleashing business model innovation in US manufacturing report 2023 (2023). World Economic Forum, White Paper, November. https://www3.weforum.org/docs/WEF_Unleashing_Business_Model_Innovation_in_US_Manufacturing_2023.pdf.

36. Van Heerden L. Which industries are the most digital, and why? (2019). https://journeyapps.com/blog/which-industries-most-digital-why/.

37. Xu X., Lu Y., Vogel-Heuser B., Wang L. (2021). Industry 4.0 and Industry 5.0 – Inception, conception and perception. Journal of Manufacturing Systems, 61: 530–535. https://doi.org/10.1016/j.jmsy.2021.10.006.


评论

供引用:


Ilkevich S.V. 工业企业数字化转型指数构建和解释的概念性方面. 战略决策和风险管理. 2024;15(1):30-45. https://doi.org/10.17747/2618-947X-2024-1-30-45

For citation:


Ilkevich S.V. CONCEPTUAL ASPECTS OF CONSTRUCTING AND INTERPRETING OF DIGITAL TRANSFORMATION INDICES FOR MANUFACTURING ENTERPRISES. Strategic decisions and risk management. 2024;15(1):30-45. https://doi.org/10.17747/2618-947X-2024-1-30-45

浏览: 287


ISSN 2618-947X (Print)
ISSN 2618-9984 (Online)