Preview

战略决策和风险管理

高级搜索

高科技公司投资过程中 高效解释 启发法模型形成的行为和认知因素

https://doi.org/10.17747/2618-947X-2023-2-198-212

摘要

该文章系统阐述了认知扭曲和行为启发式的主要因素。它们在投资组合中,主要是在高科技公司,使转向“高效解释”模型变得不可逆转。由于在投资系统发展的现阶段,“高效解释”启发式模式可能会被认为普遍增加了系统中所有参与者的风险,作者重点阐述了认知和行为因素最消极的表现形式。然而,这并不意味着回归理性投资者模式是可能的或可取的,因为在“新经济”产业的形成和颠覆者公司的业务建设中,叙事和讲故事意义重大。为了更好地解读公司的商业潜力,参与者尤其是投资者,越来越需要使用叙事、讲故事、商业中的接受和信任问题,而不是财务报表和分析的数值和比率来。部分原因是,在过去二十年中,S&P500 指数公司的无形资产占总市值的比例高达 90%。

最重要的认知和行为因素包括:增加股东价值的叙事部分、“fake it till you make it” 方法、密码货币发展(这种资产的价值具有最大的叙事成分)、2020-2021 年的 IPO 和 SPAC 热潮、无益的信号工具 — 回购、普及基于倖存者偏差的即时增益法、战略动力流行、过度依赖分析师的建议和估计、“pump and dump”方法、投资游戏化、投资者外向性、沉锚效应和框架效应、沉没成本误区、取消投资论文的严格方法缺乏,以及对过去十五年投资中资金自由使用的看法。认识和跟踪至少是形成和进一步发展“高效解释”启发法模型的最重要的行为和认知因素,将有助于降低“新经济”金融和投资体系的风险,提高其长期发展的可持续性。

关于作者

S. V. Ilkevich
俄罗斯联邦政府金融大学(俄罗斯莫斯科)
俄罗斯联邦

经济学副博士,俄罗斯联邦政府金融大学战略与创新发展部副教授,管理研究与咨询学院主任研究员(俄罗斯莫斯科)。ORCID: 0000-0002-8187-8290; Scopus ID: 56028209600; SPIN: 6655-7300.

研究领域:创新与商业模式、国际商务、产业数字化转型、共享经济、股票市场、组合投资、体验经济、教育国际化。



参考

1. Илькевич С.В. (2022). Эвристическая модель «эффективного интерпретатора» в портфельных инвестициях в высокотехнологичные компании. Стратегические решения и риск-менеджмент, 13(2): 116–128.

2. Austin J. (2021). Stock markets play ‘Whack a mole’ with pump and dump schemes (draft). UC Davis Business Law Journal, Forthcoming. https://ssrn.com/abstract=3972431 or http://dx.doi.org/10.2139/ssrn.3972431.

3. Azqueta-Gavaldón A. (2020). Causal inference between cryptocurrency narratives and prices: Evidence from a complex dynamic ecosystem. Physica A: Statistical Mechanics and its Applications, 537: 122574. https://doi.org/10.1016/j.physa.2019.122574 or https://www.sciencedirect.com/science/article/pii/S0378437119314736.

4. Blau B.M. (2019). Price clustering and investor sentiment. Journal of Behavioral Finance, 20(1): 19–30. DOI: 10.1080/15427560.2018.1431887.

5. Brady K., Premti A. (2019). How do investors determine stock prices after large price shocks? Journal of Behavioral Finance, 20(3): 354–368. DOI: 10.1080/15427560.2018.1511563.

6. Brown A. (2020). Robinhood is not gamifying markets. It’s democratizing them. Bloomberg, 18 December. https://www.bloomberg.com/opinion/articles/2020-12-17/robinhood-is-democratizing-markets-not-making-them-a-game.

7. Chen A., Obizaeva O. (2022). Stock Buyback Motivations and Consequences: A Literature Review. CFA Institute Research Foundation. https://books.google.ru/books?id=bclgEAAAQBAJ&dq=buybacks+and+stock+prices&lr=&hl=ru&source=gbs_navlinks_s.

8. Chen D.-F., Chen P.-K., Chung S.-H., Cheng K.-C., Wu C.-H. (2020). The influence of performance feedback frequency and affective commitment on the sunk cost effect. Managerial and Decision Economics, 41: 873–882. https://doi.org/10.1002/mde.3144.

9. Chen Y., Kumar A., Zhang C. (2021). Searching for gambles: Gambling sentiment and stock market outcomes. Journal of Financial and Quantitative Analysis, 56(6): 2010–2038. DOI: 10.1017/S0022109020000496.

10. Corredor P., Ferrer E., Santamaria R. (2014). Is cognitive bias really present in analyst forecasts? The role of investor sentiment. International Business Review, 23(4): 824–837. https://doi.org/10.1016/j.ibusrev.2014.01.001.

11. Deaves R., Lei J., Schröder M. (2019). Forecaster overconfidence and market survey performance. Journal of Behavioral Finance, 20(2): 173–194. DOI: 10.1080/15427560.2018.1505727.

12. Demirer R., Zhang H. (2019). Industry herding and the profitability of momentum strategies during market crises. Journal of Behavioral Finance, 20(2): 195–212. DOI: 10.1080/15427560.2018.1505728.

13. Grobys K., Sapkota N. (2019). Cryptocurrencies and momentum. Economics Letters, 180: 6–10. https://doi.org/10.1016/j.econlet.2019.03.028 or https://www.sciencedirect.com/science/article/pii/S0165176519301077.

14. Haita-Falah C. (2017). Sunk-cost fallacy and cognitive ability in individual decision-making. Journal of Economic Psychology, 58: 44–59. https://doi.org/10.1016/j.joep.2016.12.001.

15. Ishfaq M., Nazir M.S., Qamar M.A.J., Usman M. (2020). Cognitive bias and the extraversion personality shaping the behavior of investors. Frontiers in Psychology, 11. https://www.frontiersin.org/article/10.3389/fpsyg.2020.556506. DOI: 10.3389/fpsyg.2020.556506.

16. Jo H., Park H., Shefrin H. (2020). Bitcoin and sentiment. Journal of Futures Markets, 40: 1861–879. https://doi.org/10.1002/fut.22156.

17. Johnson S.G.B., Tuckett D. (2022). Narrative expectations in financial forecasting. Journal of Behavioral Decision Making, 35(1): e2245. https://doi.org/10.1002/bdm.2245.

18. Karamanou I. (2011). On the determinants of optimism in financial analyst earnings forecasts: The effect of the market’s ability to adjust for the bias. Abacus, 47: 1–26.

19. Kim K., Ryu D., Yu J. (2021). Do sentiment trades explain investor overconfidence around analyst recommendation revisions? Research in International Business and Finance, 56. https://doi.org/10.1016/j.ribaf.2020.101376.

20. Klausner M.D., Ohlrogge M., Ruan E. (2022). A sober look at SPACs (December 20, 2021). Yale Journal on Regulation, 39(1). https://ssrn.com/abstract=3720919 or http://dx.doi.org/10.2139/ssrn.3720919.

21. Kudryavtsev A. (2018). The availability heuristic and reversals following large stock price changes. Journal of Behavioral Finance, 19(2): 159–176. DOI: 10.1080/15427560.2017.1374276.

22. Kurt A.C. (2018). Managing EPS and signaling undervaluation as a motivation for repurchases: The case of accelerated share repurchases. Review of Accounting and Finance, 17(4): 453–481. https://www.emerald.com/insight/content/doi/10.1108/RAF-05-2017- 0102/full/html.

23. Leins S. (2022). Narrative authority: Rethinking speculation and the construction of economic expertise. Ethnos, 87(2): 347–364. DOI: 10.1080/00141844.2020.1765832.

24. Lian C., Ma Y., Wang C. (2019). Low interest rates and risk-taking: Evidence from individual investment decisions. The Review of Financial Studies, 32(6): 2107–2148. https://doi.org/10.1093/rfs/hhy111.

25. Nguyen L., Gallery G., Newton C. (2019). The joint influence of financial risk perception and risk tolerance on individual investment decision-making. Accounting and Finance, 59: 747–771. DOI: 10.1111/acfi.12295.

26. Oehler A., Wendt S., Wedlich F., Horn M. (2018). Investors’ personality influences investment decisions: Experimental evidence on extraversion and neuroticism. Journal of Behavioral Finance, 19(1): 30–48. DOI: 10.1080/15427560.2017.1366495.

27. Palladino L. (2020). Do corporate insiders use stock buybacks for personal gain? International Review of Applied Economics, 34(2): 152–174. DOI: 10.1080/02692171.2019.1707787.

28. Palladino L., Lazonick W. (2021). Regulating stock buybacks: The $ 6.3 trillion question. Roosevelt Institute Working Paper, May. https://rooseveltinstitute.org/wp-content/uploads/2021/04/RI_Stock-Buybacks_Working-Paper_202105.pdf.

29. Ponczek S. (2020). Reddit’s stock threads become a must-read on Wall Street. Bloomberg, 15 September. https://www.bloomberg.com/news/articles/2020-09-15/big-investors-are-dying-to-know-what-the-little-guys-are-doing.

30. Rudegeair P., Grind K., Farrell M. (2021). Robinhood’s reckoning: Facing life after GameStop. The Wall Street Journal, 5 February. https://www.wsj.com/articles/robinhoods-reckoning-can-it-survive-the-gamestop-bubble-11612547759.

31. Steinmetz F. (2023). The interrelations of cryptocurrency and gambling: Results from a representative survey. Computers in Human Behavior, 138: 107437. https://doi.org/10.1016/j.chb.2022.107437 or https://www.sciencedirect.com/science/article/pii/S074756322200259X.

32. Stolowy H., Paugam L., Gendron Y. (2022). Competing for narrative authority in capital markets: Activist short sellers vs. financial analysts. Accounting, Organizations and Society, 100: 101334. https://doi.org/10.1016/j.aos.2022.101334.

33. Tan G.K.S. (2021). Democratizing finance with Robinhood: Financial infrastructure, interface design and platform capitalism. Environment and Planning A: Economy and Space, 53(8): 1862–1878. DOI: 10.1177/0308518X211042378.

34. Taskinsoy J. (2021). The famous new bubbles of the 21st century: Cases of irrational exuberance. https://ssrn.com/abstract=3845422 or http://dx.doi.org/10.2139/ssrn.3845422.

35. Thomsett M.C. (2013). Dangerous waters: Risk inherent in comprehensive swing-based strategies. In: Options for Swing Trading. New York, Palgrave Macmillan. https://doi.org/10.1057/9781137344113_4.

36. Zhang W., Wang P., Li X., Shen D. (2018). The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average. Physica A: Statistical Mechanics and Its Applications, 510(92): 658–670. https://doi.org/10.1016/j.physa.2018.07.032.


评论

供引用:


Ilkevich S.V. 高科技公司投资过程中 高效解释 启发法模型形成的行为和认知因素. 战略决策和风险管理. 2023;14(2):198-212. https://doi.org/10.17747/2618-947X-2023-2-198-212

For citation:


Ilkevich S.V. BEHAVIORAL AND COGNITIVE FACTORS IN THE FORMATION OF THE HEURISTIC MODEL OF THE EFFECTIVE INTERPRETER IN INVESTING IN HIGH-TECH COMPANIES. Strategic decisions and risk management. 2023;14(2):198-212. https://doi.org/10.17747/2618-947X-2023-2-198-212

浏览: 402


ISSN 2618-947X (Print)
ISSN 2618-9984 (Online)