A.B. MANVELIDZE

Candidate of Economic Sciences, Associate Professor of the Departme "Financial Management" of the Federal State Budget Educational Institution of Higher Professional Education "Moscow State University of Technology "STANKIN". Research interests: economics of air transport

E-mail: a.b.manvelidze@ gmail.com.

THE COST OF OPERATION OF AIRCRAFT OF THE MAJOR US AIR CARRIERS

ABSTRACT

$T_{\text {he indicators of the cost and profitability of passenger traffic are studied using the statistics of }}$ American Airlines, Delta Airlines and United Airlines as well as financial and statistical analysis of American Airlin
US companies.
The indices of the cost of transportation and profitability in the period of significant reduction in prices for jet fuel in 2014-2016 are compared. The focus is on the analysis of the fleet of aircraft and changes in individual items of expenditures.
An algorithm for calculating the cost of transportation by types of aircraft according to the statistical accounting is proposed. The calculations take into account the fact that in the US air transportation industry one keeps statistical records of direct flight costs by types of aircraft. The share of direct light costs is 50%. Indirect costs are distributed by means of calculation.
The cost of seat-kilometer for direct and indirect cost items of narrow-body aircraft 737-800/900 and A319/320/321 at a distance of 2000 km ranges from 8,8 to 11 cents. At a distance of more than 2000 km the cost decreases to $7,7-8,3$ cents.
The cost of seat-kilometer for the aircraft 757-200/300 and wide-body aircraft 767-300 777-300, A330-200/300 at a distance of $3000-5000 \mathrm{~km}$ is $6,8-7,8$ cents per seat-kilometer. The cost of seat kilometer for wide-bodied aircraft 777-200 / 300, 787-800 / 900, A330-200 / 300 at distances ove 6000 km ranges from 60 to 67 cents.

KEY WORDS AR TRANSPORTAIION, ARLLINES, REGIONAL, ALLANCES, AGREEMENTS, PPES OF AIRCRAFT, COST OF SEAT-KLLOMETER, FUEL CONSUMPTION, DELIVERIES, LEASING

INTRODUCTION

The main criterion of efficiency in air ransport is the cost of air transportation. Indicators of the cost of flights, the volumes of flight or air transport works, flig,
air transport works are applied.
The cost of flights is calculated taking into ccount the planned or actual costs for wages, maintenance and ownership of aircraft per flight our and the costs of jet fuel and paid aeronautical and airport services. The costs per unit of work flight hour, seat-kilometer, passenger-kilometer nd ton-kilometer) are used to compare different or similar types of aircraft. They also serve as a ort benchmark in he formation of requirements ircraft The costs price is used in the justification f tariffs for air transportation in the development of business plans of airlines, in estimating the ost of airplanes in accordance with the profits approach.
The cost of transportation is calculated as quotient from dividing the sum of expenses secified in the regulatory documents by the
volume of performed works (transportation): seat-kilometers (seat-miles), passengerkilometers (passenger-miles), flight hours, on-kilometers (ton-miles), maximum ton-
 a whole for aviation companies or for certain yspes of aircraft. The cost of funstere materials, nergy, fixed assets, labor resources, the cost of overflights and the provision of take-off and landing services for aircraft, passengers and cargo. The cost is significantly affected by the flight performance of the aircraft, in particular commercial payloads varying according to he range of non-stop fights, fight speed, fue consump

The cost of transportation is significantly influenced by cost indicators:

- price of jet fuel;
cost of ownership of aircraft; wage rates and number of staff;
- maintenance costs and repairs of aircraft; charges and tariffs at airports, charge for air navigation and meteorological
services;
cost of passenger services, cost of sales of transportation, insurance, advertising, etc.
Cost parameters vary in time, due to fluctuations in oil price and technical improvement of aircraft and aircraft engines.
The regional differences in transportation costs are explained
by:
Different prices for jet fuel in countries producing and processing hydrocarbons and in countries importing petroleum products;
- differences in the costs of leasing and maintenance and repair in countries, which produce aircraft and in countrie that import airplanes, aircraft engines and spare parts for maintenance and repairs.
differences in the wage levels of pilots, whose number in the recent years has proved to be insufficient);
differences in the cost of airport services located in different climatic zones.
The world civil aviation has adopted a direct accurat accounting of fuel consumption by aircraft types (in tons o gallons). In addition, the number of fights, fight hours and aircraft In the Russian Federation such accounting is reflected in statistical forms 32 GA and 33 GA , which correspond to th forms of the International Civil Aviation Organization (ICAO) The accounting makes it possible to determine the specific fue consumption by type of aircraft per flight hour, seat-kilometer or kilometer with reference to the average range of non-stop flight.

In order to substantiate the advantages of new modification ne uses an indicator of reduction of specific fuel consumptio compared to the existing types of aircraft, an increase productivity (commercial payload and speed) and flight range.

RESEARCH METHODOLOGY
The International Civil Aviation Organization (ICAO) collect analyzes and publishes data on the cost of seat-kilometers and passenger-kilometers of airlines. By comparing the cost of a sea kilometer with revenue rates one can draw conclusions about the fits or losses of airlines.
Airlines Inc., Delta AirLines Inc. and United AirLion of American indices of the cost of transportation and profitability in the. The of considerable reduction in prices of jet fuel in 2014-2016 are compared. The focus is on analyzing the fleet renewal and change (increases) in the main items of expenditures.

One distinguishes between the planned and actual costs. The planned costs are determined by the specified type of aircra based on the route length, estimated flight time and consumptio of jet fuel. Cost parameters are the published prices of fuel, a navigation services, airports, maintenance costs per flight hour an estimated costs of aircraft ownership.
The actual cost is determined according to the initial data of flight time records, the cost of jet fuel, transported passenger cargo and mail, as well as the data of accounting document because the results of calculations are not always reliable. Mor correct results can be obtained if at least 50% of the costs are directly recorded according to the types of aircraft

The collection of the mentioned statistics by types of aircraa implemented by the US airlines. The reports on flight hours fuel consumption and direct flight costs are quarterly publishe by the United States Transportation Statistics Bureau (transtats ts.gov) in (he Airline Finance (Aircarrier inancial) section rarriers (AirCarrierFinancial: ScheduleP-5.2, P-5.1) [Bureau of Transportation Statistics, [s a]].

Indirect costs include the

Indirect (primarily for the costs of passenger services, airport for the take-off and landing of aircraft), air avigation support, transportation sales, advertising, insurance, ental and maintenance of ground infrastructure and other costs The costs of American carriers for the listed items are recorde the airline as a whole in Air Carrier Financial: Schedule P-7. or the purpose of the study indirect costs by type of aircraf are distributed in proportion to the fights or aircraft-kilometer (aircraft-miles) taking into account the coefficients reflecting the ake-off weight of airplanes.
Cost accounting is also conducted in a group according to economic elements (without separating by type of airlin operations) with distinguishing the following items: wages
with charges, materials (including jet fuel), services, rent, depreciation and amortization etc. Airlines data are reflected it the AirCarrierFinancial report: Schedule P-6. The accounting data n cost elements are required when comparing the performance of different types of transport.

ANAL YSIS OF THE COST

OF TRANSPORTATION FOR US AIRLINES

The US airlines can be classified into three categories the leading airline, major airlines and regional airlines. Th leading airlines such as American Airlines, DeltaAirLines and UnitedAirlines are large passenger carriers with hubs and network used by regional airlines operating aircraft with smaller JetBlue operate from hubs and do not attract regiona airlines for flights on their route networks.
It took a long time for the relations between regional carrier and their larger American partners to be formed. The existing organization of the regional airlines' business is based on regula flights on airplanes with a capacity less than 90 seats from smal destinations and secondary hub airports in accordance with ontracts for the provision of capacities of regional carriers to arge network carriers: American Airlines - American Eagle brand, Delta Airlines - Delta Comnection brand and Unite Airlines - United Express brand.
The existing contractual agreements impose restrictions on the capacity of regional aircraft, the number of regional aircraft that can be used depending on their ratio to the operated main aircraft, limit the range of routes for aircraft of regional airlines nd in in are orents developed by the unions of flight personnel, and ar amed at protecting the interests of pilots of the main airlines. Th aimed at protecting the interests of pilots of the main airlines. The Under the the restrictions is the lack of pilots. major airlines pay a fixed rate to regional airlines for operating
he aircraft based on the number of flights, the hours flown and the number of aircraft under the contract. In addition, regiona airlines performing regional flights on their route networks ar reimbursed for fuel, owning or leasing of airplanes, airport The i les there united in in thes of costs for regional companies into their costs.

American Airlines Group Inc.
The history of American Airlines Group Inc. began with the formation of AMR Corporation in 1982. On December 9, 2013 subsidiary of AMR Corporation merged with the US Airway Group Inc. After the merger the new company was named American Airlines Group Inc. The integration was completed in April 2015, when the Federal Aviation Administration gave a single operational certificate for both carriers. Today, this big network operator provides regular air transportation of passengers and cargo

The subsidiaries of American Airlines Group Inc. are merican Airlines Inc. operating on the main routes, and regiona Airliny Aviation Group Inc, PSA Airlines Inc, iedmont Airlines Inc.
The American Eagle brand currently uses 10 airlines, cluding subsidiaries: Envoy, Piedmont and PSA.
Together with regional airlines American Airlines operate about 6700 flights daily (mainly from Charlotte, Chicago, Dallas Fort Worth, Los Angeles, Miami, New York, Philadelphia, Phoenix and Washington) to 350 destinations in 50 countries In 2017 American Airlines Group Inc. transported about 200 million passengers.
American Airlines Group Inc. is one of the founders of the Alliance Oneworld World, whose members coordinate passenger ransfers, fares and services. The availability and the use of the fleet of aircraft, transportation volumes, revenues and expenses of the main and regiona As of
Anted 948 long-haul aircraft (Table 1). Airlines he group continued the extensive fleet renewal program launched in 2015. During 2017 American Airlines introduced 57 new long-haul aircraft and decommissioned 39 long-haul aircraft
The group supported the renewal of the fleet of its own and third-party regional carriers, which operated fights under the agreements on the purchase and sale of the carriage capacities. As a result of the fleet update the American Airlines Group Inc. had the smallest age of aircraft compared with other major US network perators.
In 2017, under the American Eagle brand a total of 597 regional aircraft performed the flights (Table 2) 201763 aircraft joined the regional fleet while 2 aircraft were decommissioned.
Obligations regarding the acquisition of longaul and regional aircraft are shown in Tables 3, 4 engines, which will be supplied from 2018. The share of the company's own aircraft was 56%. The planned
long-term costs (liabilities) for the purchase and rental of aircraft, as well as the purchase of carriage capacities of regiona companies, are shown in Table
In 2017 the costs of wages and benefits amounted to about about 126600 active full-time employees worked in the company proximately 85% of them were members of various trade rions. The distribution of the key personnel by trade unions and professions is given in Table 5.
Financial results are largely influenced by jet fuel prices. The data on fuel consumption and fuel prices for American Airlines Group Inc. are given in Table. 6. The reduction in aviation fuel costs in 2016 was caused by the decrease in the average price pe allon of fuel by $17,4 \%$ or by 1,41 dollar per gallon compared to 2015. In 2017 the price of aviation fuel increased by $21,8 \%$. Compared with 2016 the share of jet fuel costs increased by 2 points.
The increase in the average price of a gallon of fuel was partially offset by a $0,7 \%$ reduction in specific fuel consumption, which was caused by the introduction of more fuel-efficie Revenues expe
Ricator ond econemic American Airlines Group Inc. for 2014-2017 are Amen in Tables $7-8$
American Airlines Group Inc. remained profitable in demand for transportation. Compared to 2016 the profitability of passenger transport increased by $3,2 \%$ (see Table 7,8 and Fig. 1), the total revenues from passenger transportation increased by 1,55 billion dollars or by $4,5 \%$ mainly due to the increase profitability. The internal consolidated profitability increased by $3,5 \%$, while international profitability increased by $3,2 \%$ mainly due to the improved performance in Latin America

The fleet of long-haul aircraft of AmericanAirines, Inc. as of December 31, 2017

Type of aircraft	Average number of seats	Average age (years)	Ownership	Rent	Total
A319	128	13,8	21	104	125
A320	150	16,7	10	38	48
A321	178	5,4	165	54	219
A330-200	251	6,0	15	-	15
A330-300	291	17,4	4	5	9
$737-800$	160	8,1	132	172	304
$737-8$ MAX	172	0,1	4	-	4
$757-200$	180	18,1	31	3	34
$767-300$ ER	209	19,1	24	-	24
$777-200$ ER	269	17,0	44	3	47
$777-300 E R$	310	3,8	18	2	20
$787-8$	226	2,1	20	-	20
$787-9$	285	0,7	14	-	14
Embraer 190	99	10,2	20	-	20
MD-80	140	21,3	13	32	45
Total	-	10,1	535	413	948

The fleet of subsidiary regional operators and regional operators operating under the American Eagle brand as of December 31, 2017

Type of aircraft	Average number of seats	Ownership	Rent	Property or rental of a third-party carrier	Total	Regional carrier	The number of the operated aircraft
CRJ 200	50	12	23	33	68	PSA	35
						Air Wisconsin (2)	23
						SkyWest	10
						Total	68
CRJ 700	66	54	7	49	110	PSA	34
						Envoy	27
						SkyWest	37
						ExpressJet	12
						Total	110
CRJ 900	77	54	-	64	118	PSA	54
						Mesa	64
						Total	118
Dash 8-100	37	3	-	-	3	Piedmont	3
Dash 8-300	48	-	11	-	11	Piedmont	11
E175	76	64	-	84	148	Envoy	44
						Republic	84
						Compass	20
						Total	148
ERJ 140	44	21	-	-	21	Envoy	21
ERJ 145	50	118	-	-	118	Envoy	68
					597	Piedmont	35
						Trans States	15
						Total	118
Total		326	41	230			597

Catgo revenus increased by 100 million dollars . $14,3 \%$ due to the increase in freight volumes. Other revenues include loyalty program revenues, baggage fees, ticket change fees, airport lounges
and lighting services. Other revenues increased by and lighting services. Other revenues increased by
373 million dollars or $7,6 \%$ mainly due to higher 373 million dollars or $7,6 \%$ mainly due to higher profits associated with the loyalty program. Total operating revenues increased by 2,0 billion dollars or $5,0 \%$ mainly due to the increase in passenger evenus.
According to the financial report, operating expenses increased by 3,3 billion dollars or $9,5 \%$ (see Table 8). An increase in operating expenses
was caused mainly by higher fuel costs and higher wage rates for pilots, flight attendants and engineering and technical personnel.
$\begin{array}{lll}\text { An increase in the costs of maintenance, } & \begin{array}{l}\text { *These aircraft can be operated by subsidiaries; they can be leased to third-party regional } \\ \text { carriers who will operate the aircraft within the framework of the procurement of carriage }\end{array}\end{array}$ repairs and materials is due to the changes in contracts: some flight hardware was transferred to
the contracts based on paying for logged flight hours, instead of paying for expenses incurred during the maintenance and repair An increase in expenses for the sale of tickets is explained by th increase in commissions from higher sales, as well as an increas
n award tickets, the commissions for which are higher. Increased depreciation and amortization costs are associated with the flee renewal program. Other expenses increased due to the improved light catering and staff training costs.

Year	Fuelconsumption,milliongallons	Average price per gallon,dollars.	Fuel costs, million dollars.	The share of total expenses, \%	Year-to year change			
					$\underset{\text { consumption }}{\text { Fuel }}$	Price per gallon	Fuel costs	The share in total expenses, pts
2017	4352	1,73	7510	19,7	0,1	21,8	21,5	2,0
2016	4347	1,42	6180	17,7	0,6	-17,4	-17,1	-3,7
2015	4323	1,72	7456	21,5	-0,2	-40,9	-40,8	-11,3
2014	4332	2,91	12601	32,8	1,0	-5,5	-4,7	-2,2

Delta AirLines Inc. is a member of international joint ventures, alliances with foreign airlines and the global international alliance SkyTeam. It has signed agreements with several regiona carriers registered in the United States that operte under the Delta Connection brand.

The airline
The airline operates more than 5400 flights daily serving an 319 destinations in 54 countries. In 2016 Delta had the larges passenger turnover (342 billion passenger-kilometers and carriage
capacity (405 billion seat-km) among American companies. It ervices were used by million passenger
les and loyalty programs for fieces involve the sharing lounges. Agreements with some carriers may include the term of coordination of sales and marketing, co-location of airport facilities, etc.
Joint Venture Agreements. Currently Delta AirLines Inc manages five joint ventures: with AirFrance, KLM, and Alitalia

The indicators of efficiency of air transportation for $\begin{gathered}\text { Table }\end{gathered}$

Indicator	Year ended on December 31				Increase (reduction), \%		
	2017	2016	2015	2014	2017-2016	2016-2015	2015-2014
The main company American Airlines Inc							
Passenger turnover, million passenger-miles	201351	199014	199467	195651	1,2	-0,2	2,0
Maximum passenger turnover, million seat-miles	243806	241734	239375	237522	0,9	1,0	0,8
The rate of seat occupancy, \%	82,6	82,3	83,3	82,4	0,3*	$(1,0)$ *	0,9*
Profitability, cent/passenger-mile	14,52	14,02	14,56	15,74	3,6	-3,7	-7,5
Profitability of passenger transportation to maximum seat-mile, cent	11,99	11,55	12,13	12,97	3,8	-4,8	-6,5
Profitability of passenger transportation to maximum seatkilometer, cent	7,45	7,18	7,54	8,06	3,8	-4,8	-6,5
Cost of seat-mile, cent	12,96	11,94	12,03	13,42	8,5	-0,7	-10,4
Airplanes by the end of the period	948	930	946	983	1,9	-1,7	-3,8
Fuel consumption, million gallons	3579	3596	3611	3644	-0,5	-0,4	-0,9
Average cost of jet fuel including taxes, dollars/gallon	1,71	1,41	1,72	2,91	21,3	-18,0	-40,9
Full-time personnel at end of the period	103100	101500	98900	94000	1,6	2,6	5,2
Summary data of the main and regional companies of American Airlines Group Inc.							
Passenger turnover, million passenger-miles	226346	223477	223010	217870	1,3	0,2	2,4
Maximum passenger turnover, million seat-miles	276493	273410	268736	265657	1,1	1,7	1,2
The rate of seat occupancy, \%	81,9	81,7	83	82	0,2*	$(1,3)$ *	1*
Profitability, cent/passenger-mile	15,96	15,47	15,92	17,04	3,2	-2,8	-6,6
Profitability of passenger transportation to maximum seatmile, cent	13,07	12,65	13,21	13,97	3,3	-4,2	-5,4
Profitability of passenger transportation to maximum seatkilometer, cent	8,12	7,86	8,21	8,68	3,9	-3,6	-5,0
Cost of seat-mile, cent	15,27	14,7	15,25	16,06	0,6	0,2	-1,0
Airplanes by the end of the period	1545	1536	1533	1549	0,1	0,6	$-0,2$
Fuel consumption, million gallons	4352	4347	4323	4332	21,8	-17,4	-40,9
Average cost of jet fuel including taxes, dollars/gallon	1,73	1,42	1,72	2,91	3,5	3,2	4,6
Full-time personnel at end of the period	126600	122300	118500	113300	1,2	-0,2	2,0

The indicators of efficiency of air transportation for American Airlines Group Inc. in 2014-2017

$2017 |$| | 2016 | 2015 | 2014 | $2017-2016$ | $2016-2015$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2015-2014 | | | | | |

* Increase (decrease) by years indicated in paragraphs

The main financial and economic resele $\begin{gathered}\text { Thts of American Airlines Group Inc. } \\ \text { in } 2014-2017\end{gathered}$

\section*{| Revenues from air transportation |
| :--- | :--- | :--- |}

\left.| Revenues from air transportation | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Mainline passengers | 29238 | 27909 | 29037 | 30802 | |
| Regional passengers | 6895 | 6670 | 6475 | 6322 | |
| Freights | 800 | 700 | 760 | 875 | |
| Other revenues | 5262 | 4884 | 4666 | 4677 | |
| Total operating revenues | 42 | 195 | 40 | 163 | 40938 |
| Operating costs: | | | | | |$\right)$ Operational resul

- expenditures)

Non-production income and expenditures

Interest income	215	104	49	32
Interest expenses, net	-988	-906	-796	-847
Other expenses, net	-15	-59	-774	-183
Non-production results	-788	-861	-1521	-998
(income - expenses)				

to service routes between North America and Europe, with Virgin Atlantic Airways for non-stop flights between the United Kingdom and North America; with Virgin Australia Airlines and its affiliated carriers to service transit routes between North America and Australia, New Zealand, and AeroMexico for cross border flights between the USA and Mexico. A joint venture with Korean Airlines was also established to operate on trans-Pacific outes between the United States and some Asian countries However, the company has not yet received the necessary regulatory approvals in Korea. Commercial cooperation has been established with partners within geographic coverage, including the sharing of revenues, profits, or losses on joint routes, as well as joint sales, coordinated pricing, transportation network planning, etc
68

Fig. 2. Changes in operating costs and profits of American Airlines

Delta has signed agreements with regional carriers that serve passengers in small and medium-sized cities. In 2017 approximately 16% of all Delta passenger traffic was provided by regional air carriers.
There are agreements with the following companies: ExpressJet Airlines, SkyWest Airlines, RepublicAirline, Compass Airlines, GoJetAirlines, Trans States Holdings, and EndeavorAirInc., which is a subsidiary of Delta.
The existing agreements define the mechanisms for purchasing the capacities from regional companies on flights operated under the Delta airline code. Delta AirLines Inc. has the right to receive all revenues associated with these flights. In turn, the agreements determine that Delta pays to regional airlines the amounts calculated on the basis of the costs of the performed flights taking into account the current market conditions. The agreement related to the purchasing of carriage capacities are
long-term, usually with the initial terms of at least 10 years, which makes it possible to extend the original terms.
Aircraft fleet. Tables 9 and 10 show the fleet of aircraft and
e commitments regarding the supply of aircraft as of Decembe the commitments regarding the supply of aircraft as of December
31,2017 . Table 11 shows the fleet of aircraft operated by regional 31, 2017. Table 11 shows the fleet of aircraft operated by regional
carriers on behalf of Delta. In 2018 the airline plans to spend about 4,5 billion dollars on the purchase of new aircraft B-737900 ER , A321-200 and A350-900, to make advance payments for A330-900neo and CS100B, as well as on the modernization of passenger compartments of regionally operated aircraft.
Ground Objects. DeltaAirLinesInc. mainly rents a large aircraft maintenance base, various computer rooms, cargo warehouses and training facilities, most of the offices are located at or near the Atlanta airport on the land leased from the city o Atlanta.

	感			$\begin{array}{\|l\|l} \stackrel{\text { g }}{5} \\ \hline \end{array}$						号	0 0 0			
737-800	2015	24,2	0,9	1,3	0,36	0,1	0,8	0,3	3,8	1,0	0,8	0,5	2,8	5,1
737-800	2016	24,3	1,0	1,1	0,38	0,0	0,9	0,4	3,8	1,1	0,9	0,5	3,0	5,6
737-800	2017	24,4	1,1	1,3	0,34	0,0	1,0-	0,3	4,2	1,9	1,0	0,5	1,4	4,7
757-200	2015	27,5	0,9	1,5	0,35	0,1	0,9	0,3	4,0	0,9	0,6	0,3	2,8	4,6
757-200	2016	27,6	1,0	1,2	0,32	0,0	0,9	0,3	3,8	0,9	0,6	0,3	3,0	4,9
757-200	2017	28,5	1,1	1,5	0,34	0,0	1,0	0,3	4,4	1,6	0,7	0,3	1,4	4,0
767-300/300ER	2015	29,4	0,9	1,6	0,37	0,1	0,9	0,3	4,2	0,7	0,3	0,2	2,8	4,0
767-300/300ER	2016	29,1	1,0	1,3	0,38	0,1	0,9	0,4	4,0	0,9	0,4	0,2	3,0	4,5
767-300/300ER	2017	30,2	1,1	1,6	0,34	0,0	1,0	0,3	4,5	1,6	0,4	0,12	1,4	3,6
777-200ER/200LR	2015	33,06	0,9	1,9	0,37	0,1	0,9	0,3	4,4	0,6	0,2	0,1	2,8	3,7
777-200ER/200LR	2016	36,0	1,2	1,7	0,43	0,1	1,0	0,4	4,7	0,7	0,2	0,1	3,0	4,1
777-200ER/200LR	2017	31,6	1,1	1,7	0,34	0,1	1,0	0,3	4,6	1,1	0,2	0,1	1,4	2,9
777-300/300ER	2015	30,4	0,9	1,7	0,36	0,1	0,9	0,3	4,2	0,6	0,2	0,1	2,8	3,7
777-300/300ER	2016	32,1	1,0	1,5	0,38	0,1	0,9	0,4	4,2	0,6	0,2	0,1	3,0	3,9
777-300/300ER	2017	30,7	1,2	1,7	0,34	0,1	1,0	0,3	4,6	0,9	0,2	0,1	1,4	2,6
A330-300	2015	26,6	0,9	1,3	0,27	0,1	0,9	0,2	3,7	0,6	0,3	0,1	2,8	3,8
A330-300	2016	26,2	0,9	1,2	0,20	0,0	0,9	0,2	3,4	0,6	0,3	0,1	3,0	4,1
A330-300	2017	26,8	1,1	1,4	0,34	0,0	1,0	0,3	4.3	1,2	0,4	0,2	1,4	3,2
A330-100/200	2015	27,2	0,9	1,4	0,28	0,1	0,9	0,2	3,8	1,3	1,1	0,6	2,8	5,7
A330-100/200	2016	27,3	0,9	1,2	0,21	0,0	0,9	0,2	3,4	1,4	1,1	0,6	3,0	6,1
A330-100/200	2017	27,7	1,2	1,5	0,34	0,0	1,0	0,3	4,4	2,5	1,2	0,6	1,4	5,7
A330-200	2015	27,2	0,9	1,4	0,27	0,1	0,9	0,2	3,7	0,6	0,3	0,1	2,8	3,8
A330-200	2016	26,9	0,9	1,2	0,20	0,0	0,9	0,2	3,4	0,8	0,3	0,2	3,0	4,3
A330-200	2017	28,9	1,1	1,6	0,34	0,0	1,0	0,3	4,4	1,9	0,5	0,3	1,4	4,1
A319	2015	31,1	0,9	1,6	0,31	0,1	0,9	0,2	4,1	1,6	1,2	0,6	2,8	6,2
A319	2016	31,2	1,0	1,4	0,26	0,0	0,9	0,2	3,8	1,7	1,3	0,6	3,0	6,7
A319	2017	31,3	1,1	1,7	0,34	0,1	1,0	0,3	4,6	3,0	1,3	0,7	1,4	6,3
A321	2015	25,3	0,9	1,3	0,31	0,1	0,9	0,2	3,7	1,0	0,8	0,5	2,8	5,1
A321	2016	24,6	1,0	1,1	0,27	0,0	0,9	0,2	3,5	1,0	0,9	0,4	3,0	5,4
A321	2017	24,5	1,1	1,3	0,34	0,0	0,9	0,2	4,2	1,7	0,9	0,4	1,4	4,5
B787-800Dreamliner	2015	25,6	0,8	1,3	0,35	0,1	0,7	0,3	3,6	0,5	0,2	0,1	2,8	3,6
B787-800Dreamliner	1016	27,3	1,0	1,3	0,39	0,0	0,9	0,4	4,0	0,5	0,2	0,1	3,0	3,8
B787-800Dreamliner	2017	26,4	1,1	1,4	0,34	0,0	1,0	0,3	4,3	0,8	0,2	0,1	1,4	2,5
B787-900Dreamliner	2017	22,9	1,1	1,2	0,34	0,0	1,0	0,3	4,1	0,7	0,2	0,1	1,4	2,4

At airports the company leases ticket counters, passenger lounges (exits), work areas and other terminal space. Delt has entered into agreements on the use of airfields, the use runways, taxiways and other structures. The landing fee is usuall calculated based on the number of landings and the weight of the aircraft.
The leasing contracts are usually valid from one year to 30 years or more. They provide for periodic adjustments in renta rates, landing fees, etc. The tariffs for operational maintenanc basis
The results of operations are largely affected by fluctuations in the price of aviation fuel (Table 12)
The subsidiaries Delta, Monroe and MIPC own and operate the Trainer refinery, pipelines and terminals. The refinery produces jet fuel, gasoline, diesel and other petroleum produc
states that the supply of non-reactive fuel from the operation of the refinery contributed to the reduction in the market price of jet fuel.
In 2017 6,0 billion dollars or $19,2 \%$, of total operating expenses were spent on aviation fuel and related taxes.
The largest decline in fuel prices was observed in 2015 compared to $2014(44 \%)$, in 2016 the fall in prices of jet fue lowed down and stopped in 2017. The basic financial an gure 3.
analysis of operating expenses of Delta AirLines presented in Table. 14. As of December 31, 2017 approximately 87000 employees worked full time. 19% of them were member of trade unions.
In 2017 wages amounted to 30% of costs. In 2015-2016 wages and related expenses increased due to an increase in pilo 18\%) a rew a newtrat
ang costs for the leasing of aircraft, which are recorded on a straight-line basis over the lease term, amounted to 1,3
Advertising expenses were 284,277 and 230 million dollars for 2017, 2016 and 2015, respectively
Analysis of financial indicators. In 2017 earnings before taxes amounted to 5700 million dollars, a decrease of 935 million dollars compared with the previous year mainly due to highe prices of fuel, labor costs, related costs and depreciation costs, prices of fuel, labor costs, related costs and depreciation costs,
which were partially offset by an increase in operating income. Revenues before taxes were adjusted by 101 million dollars aking into account special items (Table 15) and amounted to 5,5 billion dollars.
The operating income increased by 1,6 billion dollars, or $4,0 \%$. Per mile revenues increased by $2,1 \%$ compared with 2016 Revenues per passenger for one seat-mile (PRASM) increased due to high tariffs on domestic transportation, the dissemination of special fares, business in the Atlantic region, and high rates in the Caribbean, Central America, Brazil and Mexico.
In 2016 operating expenses decreased by 215 million dollar 13 conold due to lower fuel prices. With the by $2,6 \%$ in fuel prices in 2017 total onerating expenses grew by 2,4 billion dollars while consolidated operating costs per seat-mile (CASM) increased by $6,4 \%$ compared with 2016 to 13,81 cents mainly due to higher costs of fuel, wages, related costs and costs

Delta's commitment to acquire aircraft, units					
Type of aircraft	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	After $\mathbf{2 0 2 0}$	Total
A321-200	31	32	27	3	93
A321-200neo	-	-	16	84	100
A330-900neo	-	-	4	21	25
A350-900	5	2	2	10	19
B-737-900ER	23	18	-	-	41
CS100	15	25	16	19	75
Total	74	77	65	137	353

of depreciation. The increase in depreciation costs is caused primarily, by the deliveries of new aircraft including B-737 900ER, A321-200, A330-300 and A350-900, as well as due to the planned decommissioning of the fleet of MD-88 and two -767-300ER.
Table 16 shows the results of calculations of the cost of seat kilometer by types of aircraft of Delta AirLines Inc. in 2015 2017.

In 2017 the passenger-kilometer profitability increased by 1% from 15,9 to 16,0 cent per passenger-mile while due to the growth in seat utilization the seat-mile profitability increased by $2,2 \%$ to 13,7 cents. The cost of a seat-mile, adjusted for other expenses not related to operating activities, was 13,2 cents per seat-mile, which is $5,7 \%$ more than in 2016. The increase in expenses in 2017 is not offset by the growth in revenues. Therefore, although he airline maintains a positive operating profit, the profitability of air transportation is decreasing.
In 2015-2017 the cost per seat-kilometer corresponding to the average transportation distance was evaluated according to

Table 11
The fleet of aircraft operated by rebie 11 carriers on behalf of Delta, units

| Carrier | CRJ-200 | CRJ-700 | CRJ-900 | Embraer 170 | Embraer 175 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Endeavor Air, Inc.* | 50 | - | 93 | - | - | 143 |
| ExpressJet Airlines, Inc.** | - | 33 | 16 | - | - | 49 |
| SkyWest Airlines, Inc. | 86 | 27 | 36 | - | 18 | 167 |
| Compass Airlines, LLC | - | - | - | - | 36 | 36 |
| Republic Airline, Inc. | - | - | - | 20 | 16 | 36 |
| GoJet Airlines, LLC | - | 22 | 7 | - | - | 29 |
| Total | 136 | 82 | 152 | 20 | 70 | 460 |

** DurieavorAir, Inc. is a subsidiary of Delta. 2017 Delta and Express.JetAirlinesInc agreed to terminate their relations by the end of 2018 .
the types of aircraft operated by Delta AirLines
for aircraft of the types 737-700/800/900, 757-200/300,
A319/320/321 and distances up to 200 km - from 9,9 to 14 cents;
for aircraft of the types 737-800/900, 757-200/300, 767$300 / 40$, A330-200/300 and ranges from 2000 to 6000
km - from 6,7 to 8,5 cents;
for aircraft of the types
for aircraf the types 767-400, 777-200, 747-400 A330-2001300 and distances more than $6000 \mathrm{~km}-5,8$ 7,4 cents.

United Airlines Inc.

United Airlines Inc. is a subsidiary of United Continental Holdings Inc. The operating income and operating expenses of United Airlines Inc. account for almost 100% of the revenue and operating expenses of United Airlines Inc.

Table 12
DeltaAirLines, Inc. Fuel consumption and the costs of its use

Indicator	2015	2016	
Consumption, million	3988	4016	
Cost, million dollars. ${ }^{1.2}$	7579	5985	
Average price per gallon, dollars 1.2	1,9	1,49	
The share of total expenses, \%, \%	23	18,3	
${ }^{1}$ Including operations of regional carriers operating under the contracts of sale. ${ }^{2}$ Including the impact of fuel hedging and performance of refining segment.			

Basic financial and statistical daba of DeltaAirLines, Inc., 2012-2016

								Increa	e / dec	line,\%	
Indicator	2012	2013	2014	2015	2016	2017	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { N } \\ & \text { I } \\ & \text { ה } \end{aligned}$	$\begin{aligned} & \text { J } \\ & \substack{1 \\ \frac{1}{4} \\ \hline \\ \hline} \end{aligned}$	$\begin{aligned} & \text { en } \\ & \text { N } \\ & \text { E } \end{aligned}$	0 0 N -
Passenger turnover, million passenger-miles	192974	194988	202925	209625	213098	217712	1	4	3	2	2
Seat turnover, million seat-miles	230415	232740	239676	246764	251867	254325	1	3	3	2	1
Revenues from passenger transportation, mln. dollars	31754	32942	34954	34782	33777	34819	4	6	0	3	3
Revenues from cargo transportation, mln. dollars	990	937	934	813	668	729	-5	-0,3	-13	-18	9
Other income, million dollars	3926	3894	4474	5109	5194	5696	-1	15	14	2	10
Total operating income, million dollars	36670	37773	40362	40704	39639	41244	3	7	1	-3	4
Operating expenses, million dollars	34268	33981	38156	32902	32687	35130	-1	12	-14	-1	7
Profitability of passenger-mile, cent	16,5	16,89	17,2	16,6	15,9	16	3	2	-4	-4	1
Profitability of seat-mile, cent	13,8	14,2	14,6	14,1	13,4	13,7	3	3	-3	-5	2
Cost of seat-mile, cent	15,0	14,8	15,9	13,3	13,0	13,8	-1	8	16	-3	6
Passenger load factor,\%	83,8	83,8	84,7	84,9	84,6	85,6	0	1,1	0,2	-0,4	1
Fuel consumption, million gallons	3769	3828	3893	3988	4016	4032	2	2	2	1	0
Specific fuel consumption, g /seat-mile	16,26	16,45	16,24	16,16	15,94	15,85	1	-1	-1	-1	-1
Average price per gallon of fuel, dollars	3,3	3,0	3,5	1,9	1,5	1,68	-8	16	-45	-22	12
Staff at the end of the period, persons	73561	77755	79655	82949	83756	86564	6	2	4	1	3

Fig. 3 Analysis of operational
data of DeltaAirLines, Inc. for 2012-2016
The data are given in the metric measurement system
 pmech - 2 or profit to seat-km

1111 II

Table 14
Operating expenses of DeltaAirLines, Inc. million dollars

Indicator	Year ended on December 31				Increase/decrease					
					Absolute			Relative, \%		
	2014	2015	2016	2017	$\begin{aligned} & 2015- \\ & 2014 \end{aligned}$	$\begin{aligned} & 2016- \\ & 2015 \end{aligned}$	$\begin{aligned} & 2017- \\ & 2016 \end{aligned}$	2015/2014	2016/2015	2017/2016
Wages and related expenses	8120	8776	10034	10436	656	1258	402	8	14	4
Aviation fuel and related taxes	11668	6544	5133	5733	-5124	-1411	600	-44	-22	12
Expenses of regional carriers	5237	4241	4311	4503	-996	70	192	-19	2	4
Contractual services	1828	1848	1991	2235	20	143	244	1	8	12
Depreciation and amortization	1749	1835	1902	2184	86	67	282	5	4	15
Materials for repair and maintenance of aircraft	1771	1848	1823	1992	77	-25	169	4	-1	9
Passenger fees and other selling expenses	1700	1672	1710	1787	-28	38	77	-2	2	5
Boarding fees and rental payments at airports	1442	1493	1490	1528	51	-3	38	4	-0,2	3
Profit sharing	1085	1490	1115	1067	405	-375	-48	37	-25	-4
Passenger service	810	872	907	1065	62	35	158	8	4	17
Rental of aicraft	233	250	285	351	17	35	66	7	14	23
Restructuring and other	716	35	-	-	-681	-	-	-95	-	-
Other	1797	1998	1986	2249	201	-12	263	11	-0,6	13
Total operating costs	38156	32902	32687	35130	-5254	-180	2443	-14	-0,7	7

	會													
737-700	2015	30,6	1,4	2,0	0,2	0,015	1,0	0,7	5,2	2,6	1,0	0,8	2,2	6,7
737-700	2016	30,9	1,6	1,5	0,1	0,006	1,0	0,7	5,0	2,7	1,1	0,8	2,2	6,8
737-700	2017	30,6	1,8	1,6	0,1	0,005	1,2	0,8	5,6	6,1	1,6	1,1	2,2	11,1
737-800	2015	23,9	1,0	1,5	0,1	0,011	0,7	0,5	3,8	1,3	0,6	0,5	2,2	4,5
737-800	2016	24,0	1,1	1,2	0,1	0,004	0,8	0,5	3,7	1,4	0,7	0,5	2,2	4,6
737-800	2017	23,9	1,2	1,3	0,1	0,004	0,9	0,6	4,1	2,9	0,9	0,6	2,2	6,7
737-900	2015	16,7	0,6	1,1	0,1	0,002	0,5	0,3	2,6	1,3	0,6	0,5	2,2	4,6
737-900	2016	22,1	1,0	1,1	0,1	0,004	0,7	0,4	3,3	1,5	0,7	0,5	2,2	4,9
737-900	2017	22,1	1,1	1,2	0,1	0,004	0,8	0,5	3,7	3,2	1,1	0,7	2,2	7,2
757-200	2015	26,5	0,9	1,7	0,1	0,009	0,7	0,4	3,8	1,8	0,7	0,5	2,2	5,2
757-200	2016	25,2	1,0	1,3	0,1	0,004	0,6	0,4	3,4	1,6	0,7	0,5	2,2	4,9
757-200	2017	25,0	1,1	1,3	0,1	0,003	0,7	0,5	3,7	3,5	0,9	0,6	2,2	7,3
757-300	2015	22,3	0,6	1,4	0,1	0,007	0,5	0,3	3,0	1,4	0,6	0,5	2,2	4,7
757-300	2016	22,0	0,7	1,1	0,1	0,003	0,5	0,3	2,8	1,4	0,7	0,5	2,2	4,7
757-300	2017	22,0	0,8	1,2	0,1	0,003	0,6	0,4	3,1	3,4	1,0	0,7	2,2	7,3
767-400	2015	27,4	0,7	1,8	0,1	0,006	0,4	0,3	3,3	0,8	0,2	0,1	2,2	3,3
767-400	2016	27,4	0,8	1,4	0,1	0,003	0,4	0,3	3,0	0,8	0,2	0,1	2,2	3,3
767-400	2017	27,4	0,9	1,5	0,1	0,002	0,5	0,3	3,3	1,9	0,3	0,2	2,2	4,7
767-300	2015	28,1	0,8	1,8	0,1	0,007	0,5	0,3	3,5	0,9	0,2	0,2	2,2	3,5
767-300	2016	28,2	0,9	1,4	0,1	0,003	0,5	0,3	3,2	0,9	0,3	0,2	2,2	3,5
767-300	2017	28,6	1,0	1,5	0,1	0,003	0,6	0,4	3,6	1,8	0,3	0,2	2,2	4,6
777-200	2015	30,2	0,7	1,9	0,1	0,005	0,4	0,2	3,3	0,6	0,1	0,1	2,2	3,0
777-200	2016	29,9	0,8	1,5	0,1	0,002	0,4	0,2	2,9	0,7	0,2	0,1	2,2	3,1
777-200	2017	29,6	0,9	1,6	0,0	0,002	0,4	0,3	3,2	1,6	0,2	0,2	2,2	4,2
747-400	2015	34,7	0,5	2,2	0,0	0,003	0,3	0,2	3,2	0,7	0,2	0,1	2,2	3,2
747-400	2016	35,0	0,6	1,7	0,0	0,002	0,3	0,2	2,8	0,6	0,1	0,1	2,2	3,0
747-400	2017	35,1	0,7	1,9	0,0	0,001	0,3	0,2	3,1	1,7	0,2	0,2	2,2	4,2
A330-300	2015	25,6	0,6	1,6	0,1	0,006	0,4	0,2	2,9	0,7	0,2	0,1	2,2	3,2
A330-300	2016	25,5	0,7	1,3	0,1	0,002	0,4	0,2	2,6	0,8	0,2	0,2	2,2	3,3
A330-300	2017	25,3	0,7	1,3	0,0	0,002	0,4	0,3	2,9	1,8	0,4	0,2	2,2	4,6
A330-200	2015	30,5	0,9	2,0	0,1	0,007	0,5	0,3	3,7	0,6	0,1	0,1	2,2	3,1
A330-200	2016	30,9	1,0	1,5	0,1	0,003	0,5	0,3	3,3	0,7	0,2	0,1	2,2	3,2
A330-200	2017	30,7	1,1	1,6	0,1	0,002	0,5	0,4	3,7	1,8	0,3	0,2	2,2	4,4
A320	2015	28,0	1,1	1,8	0,1	0,012	0,8	0,5	4,4	2,0	0,9	0,7	2,2	5,8
A320	2016	27,3	1,3	1,4	0,1	0,005	0,8	0,5	4,1	2,0	0,9	0,7	2,2	5,8
A320	2017	26,5	1,3	1,4	0,1	0,004	0,9	0,6	4,4	4,0	1,2	0,9	2,2	8,3
A319	2015	33,6	1,7	2,2	0,2	0,023	1,5	1,0	6,6	2,7	1,1	0,9	2,2	6,8
A319	2016	31,4	1,6	1,6	0,1	0,006	1,0	0,6	4,9	2,2	1,0	0,7	2,2	6,1
A319	2017	30,1	1,6	1,6	0,1	0,005	1,1	0,8	5,2	4,4	1,3	0,9	2,2	8,9
A321	2016	26,9	1,4	1,4	0,1	0,005	0,7	0,5	4,1	3,5	1,8	1,3	2,2	8,8
A321	2017	25,9	1,3	1,4	0,1	0,004	0,8	0,6	4,1	6,9	2,3	1,6	2,2	13,0

Type of aircraft	Total	Ownership	Rent	Regional aircraft operators	Regional operator	Number of planes	$\begin{aligned} & \text { Standard } \\ & \text { configuration of } \\ & \text { seats } \end{aligned}$
EmbraerE175	152	54	-	98	SkyWest:	65	76
					Mesa:	59	
					Republic:	28	
Embraer 170	38	-	-	38	Republic:	38	70
CRJ700	65	-	-	65	SkyWest:	20	70
					GoJet:	25	
					Mesa:	20	
CRJ200	85	-	-	85	SkyWest:	55	50
					AirWisconsin:	30	
ERJ145 (XR/LR/ER)	168	29	139	-	ExpressJet:	110	50
					TransStates:	36	
Q200*	7	-	-	7	CommutAir:	7	37
EmbraerERJ135*	3	-	3	-	ExpressJet:	3	37
Total regional aircraft	518	83	142	293		518	
Total fleet of aircraft	1262	641	328	293			

according to its size network - the entire territory of the Unite States, Asia, Australia, Europe and the Middle East.
United Airlines Inc. operates flights from Newark, Chicago, Denver, Houston, Los Angeles, Guam, San Francisco and Washington airports.
Airline United Airlines Inc. and its regional carriers operate more than 4500 flights a day to 338 destination airports on fiv continents. The main company manages tarifs, prices, revenues, miles calculation, loyalty programs, etc.

United Airlines Inc. is a member of the Star Alliance, the global integrated airline network and the largest airline alliance in the world. As of January 1, 2018 the Star Alliance airlines serve 1300 airports in 191 countries with 18400 daily flights.

In addition to United Airlines Inc. the alliance includes: Adria Airways, Aegean Airrines, Air Canada, Air China, Air India, Air Airlines, Avianca, Avianca Brasil, Brussels Airlines, Cop Airlines, Croatia Airlines, EgyptAir, Ethiopian Airlines, EVA Air, LOT Polish Airlines, Lufthansa, SAS, Shenzhen Airlines, Singapore Airlines, South African Airways, SWISS, TAP Ai Portugal, THAI Airways International and Turkish Airlines.

United Airlines Inc. также организовала трансатлантиче киие совместные предприятия с Air Canada, Lufthansa, ANA и Air New Zealand.
Regional companies. United Airlines Inc. conclude agreements with the above-listed regional companies about the purchasing of capacities, the pecularity of which is the provision of a certain number of regional aircraft with a capacity of up to 76 seats, the conclusion of pilot contracts
e performance of flights according to the flight schedules of United Airlines Inc.
United Airlines Inc. pays to regional carriers the agreed (controlled) expenses for the performed flights and incentive amounts. The controlled expenses are paid at specific rates of egional carriers' operating expenses, for example, the cost of ews, maintenance and ownership of aircraft are determined by ltiplying the static values of the costs for aircraft types by the corresponding flight hours. In accordance with agreements on the purchasing of capacities, the cost of jet fuel, take-off and landing charges, and other expenses directly incurred by regional carrie are compensated by United Airlines Inc. with fixed amounts.

Aviation fuel. Table 17 shows the consumption of jet fuel during 2014-2017. As of December 31, 2017 United Airlines inc. d not have contracts on fuel hedging
As of December 3, 80800 nited Airlines Inc., including it f 4 ited Airlines Inc. eyes were members of various US As of organizations
the aircraft of the main company and aircraft of regional carriers) totaled 1262 planes (Tables 18, 19). The main airline owned 558 aircraft, or 75%.
As of December 31, 2017 United Airlines Inc. had firm obligations to acquire Boeing and Airbus aircraft (Table 20). Table 21 shows the planned United Airlines Inc. capital expenditures on the purchase of aircraft, spare engines, aircraf upgrades and other aircraft-related capital expenditures as of December 31, 2017.

United Airlines Inc. Obligations to acqu 20.1
United Airlines Inc. Obligations to acquire aircraft in 2018-2027

Type of aircraft	Number
Airbus A350	45
Boeing 737 MAX	161
Boeing 777-300ER	4
Boeing 787	18
Total	228

In 2018, 13 aircraft were delivered, including

7 aircraft 737 Max 9×49 million dollars. $=343$ million
dollars. 7 aircraft $777-300 \times 143$ million dollars $=430$ million dollars.
3 aircraft $\$ 787-9 \times \$ 133.9$ million $=\$ 402$ million; totaling \$ 1,2 billion.
The market valuation of the received new aircraft corresponding to the specified types is indicated.
Until the end of 2018 three aircraft of the type 737 Max 9, one
of the type 777-300 and three of the type 787-9 will be delivered
United Airlines Inc. rents infrastructure facilities: equipmen and premises of airports, hangars, terminals and buildings. The main rental facilities are located at the airports of San Francisco Washington Dulles, Chicago, Los Angeles, Denver, Newark,
The financial and Guam,
dicators of United Airlines Inc. Th14-2017 are presented in Table 22

United Airlines Inc. Obligations to acquire aircraft, billion dollars

Year	Obligations
2018	3,2
2019	2,9
2020	2,1
2021	2,4
2022	1,8
After 2022	9,8
Total	22,2

UAL's net profit in 2017 was 2,1 billion dollars.
Compared with 2016: passenger transportation increased by $3,4 \%$; the total revenues increased by $3,23 \%$; passenger revenue per available seat-mile (PRASM) decreased by $0,4 \%$; the cost of increased mainly due to the increase in fuel prices (by $16,8 \%$),
During 2017 UAL delivered new aircraft three Boeing
$787-9$, four Boeings $737-800$, 12 Boeings $777-300 \mathrm{ER}$, 24 new Embraer E175 and two used A320 and six A319

The changes in revenues by region in 2017 compared to 2015-2016 are shown in Table. 23. The main contribution to the growth of revenues was made by domestic flights in the USA and Canada.

UnitedAirlinesInc. Changes in revenues by regions of passenger $\begin{gathered}\text { Transportation in } 2017\end{gathered}$

Region	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	2016 to 2015	2017 to 2016
Domestic (USA and Canada)	21931	22202	23131	271	929
Pacific Ocean	5498	4959	4898	-539	-61
Atlantic Ocean	7068	6157	6285	-911	128
Latin America	3367	3238	3422	-129	184
Total	37864	36556	37736	-1308	1180

Operating expenses. Table 24 shows the company's operating expenses in 2014-2017. Compared to 2016, in 2017 wages and related expenses increased by 770 million dollars or by $7,5 \%$ mainly due to higher rates of payment and expenses for The costs of aviation fuel increased by 1,1 billion dollars or by $18,9 \%$ mainly due to the rising fuel prices and increased carriage capacities by $3,5 \%$. Airport expenses increased by 75 million dollars or $3,5 \%$ in 2017 compared to the period of the previous year due to higher rates of rent and landing. The costs of acquiring regional capacities increased by 35 million dollars or $1,6 \%$ due to an increase in annual rates of payments and profitability.
At the same time the regional potential decreased by $3,8 \%$. Depreciation increased by 172 million dollras or $8,7 \%$, mainly due to an increase in the fleet of new planes, modernization of aircraft and an increase in information infrastructure. The costs of materials for aircraft maintenance and repairs by outside organizations increased by 107 million dollars or $6,1 \%$ due to
Рис. 4. изменения себестоимости перевозок по дальности

Indicator	The value of indicators for the period 2012-2017						Changes in 2016-2017	
	2012	2013	2014	2015	2016	2017	2016/2015	2017/2016
The main destinations								
Transportation of passengers, million	93,6	91,3	91,5	96,3	101,0	108,0	4,86	6,94
Passenger-miles, billion	179,4	178,6	179	183,6	186,2	193,4	1,38	3,90
Seat-miles, billion	216,3	213	214,1	220,0	224,7	234,6	2,14	4,40
Freight ton-miles, billion	2,5	2,2	2,5	2,614	2,805	3,316	7,31	18,22
Seat occupancy rate	0,829	0,838	0,836	0,835	0,829	0,825	-0,006	-0,004
Revenues from passenger transportation, billion dollars	25,808	25,987	26,785	26,333	25,414	26,552	-3,49*	4,48
Revenues from passenger transportation per seat- mile, cent	11,9	12,2	12,5	11,97	11,31	11,32	-5,51	0,09
Gross revenues per seat-mile, cent	13,9	14,5	14,8	14,19	13,5	13,51	-4,86	0,07
Total revenues per passenger-mile (profitability), cent	14,4	14,6	15	14,34	13,65	13,73	-4,81	0,59
Cost of a seat-mile, cent	14,1	14,3	14	12,42	12,22	12,59	-1,61	3,03
Average price of a gallon of fuel, thousand dollars	3,27	3,12	2,98	1,96	1,49	1,72	-23,98	15,44
Fuel consumption, million gallons	3275	3204	3183	3216	3261	3357	1,40	2,94
Average nonstop range, miles	1895	1934	1958	1922	1859	1806	-3,28	-2,85
Average daily flying time, hours	10:38	10:28	10:26	10:24	10:06	10:27	-2,88	3,47
Summary data								
Transportation of passengers, million	140,4	139,2	138	140	143	148	2,00	3,42
Passenger-miles, billion	205,5	205,2	205,6	209	210	216	0,81	2,83
Seat-miles, billion	248,9	245,4	246	250	254	262	1,43	3,47
Seat occupancy rate	82,6	83,6	83,6	0,834	0,829	0,824	-0,005	-0,005
Operating income, total, billion dollars.	37,152	38,279	38,901	37,864	36,556	37,736	$-3,45$ a)	3,23
Income from passenger transportation, billion dollars	32,583	33,122	33,762	32,765	31,457	32,404	-3,99	3,01
Income from freight transportation, billion dollars	1,018	0,882	0,938	0,937	0,876	1,035	-6,51	18,15
Other income, billion dollars.	3,551	4,275	4,101	4,142	4,223	4,297	1,96	1,75
Operating expenses, billion dollars	37,113	3,703	36,528	32,696	32,215	34,236	-1,47	6,27
Operating result, million dollars	39	1249	2373	5168	4341	3500	-16,00	-19,37
Net income, million dollars	-723	571	1132	7301	2264	2149	-68,99	-5,08
PRASM (Passenger revenue per available seat-mile), cent	13,09	13,5	13,72	13,11	12,4	12,35	-5,42	-0,40
Total revenues per seat-mile, cent	14,9	15,6	15,8	15,15	14,42	14,38	-4,82	-0,28
Total revenues per passenger-mile (profitability), cent	15,9	16,1	16,4	15,72	14,96	14,98	-4,83	0,13
Cost of a seat-mile, cent	14,91	15,09	14,85	13,08	12,7	13,05	-2,91	2,76
Average price of a gallon of fuel, thousand dollars	3,27	3,13	2,99	1,94	1,49	1,74	-23,20	16,78
Fuel consumption, million gallons	4016	3947	3909	3886	3904	3978	0,46	1,90
Average nonstop range, mile	1429	1445	1480	1487	1473	1460	-0,94	-0,88

Average nonstop range, mile

United Airlines Inc. The analysis of operating expenses in 2014-2017

increase in the number of repairs of planes and engines and dditional repair of wireless equipment (for entertainment).
The leasing of planes decreased by 59 million dollars or $8,7 \%$ due the acquisition of aircraft and lower rental rates. Other operating expenses increased by 236 million dollars or $4,4 \%$ due to the increased costs of onboard catering, marketing and technologies related to customer service, as well the increase in freight transportation,
At the end of 2017 operating expenses increased by 2,02 billion dollars, the revenues increased by 1,18 billion, the operating result decreased from 4341 million dollars in 2016 to 3500 million dollars in 2017 or by 19,4\%.
Table 25 shows the results of calculations of the cost per seatTable 25 shows the results of calculations of the cost per seat-
2017. The share of direct costs amounted on average to 45%.In 017 the financial results of United AirLines Inc. were affected mainly by the increase in the volumes of traffic and revenues mainly by the increase in the volumes of traffic and revenues,
The revenues from passenger transportation increased by 1,180 The revenues from passenger transportation increased by 1,180 mile fell by $0,4 \%$, due to lower profitability of regional flights. (According to the calculation, the average tariff for regional lines decreased from 150 to 138 dollars per one flight).
The cost of the seat-mile increased by $2,76 \%$. The cost pe seat-kilometer of long-haul aircraft operated by United AirLines Inc varies:

- for A319, A320, A321, 737-800 and 757-200 at a distance of up to 2000 km - from 10 to 17 cents

The cost per seat-kilometer for AmericanAirinesInc. (AAL), DeltaAirLines Inc. (DAL) and UnitedAirLines Inc. (UAL) on average in 2015-2017

Type of aircraft	Direct fight costs			Indirect costs			Total			Average range, km		
	UAL	AAL	DAL									
737-700	5,3	-	5,1	6,0	-	6,7	11,3	-	11,9	1873	-	1259
737-800	3,9	3,8	3,7	5,3	5,3	4,6	9,2	9,1	8,3	2122	1156	2240
737-900	3,1	-	3,0	5,2	-	4,8	8,3	-	7,7	2184	-	2126
747-400	4,0	-	3,0	3,5	-	3,1	7,5	-	6,1	9577	-	9629
757-200	3,9	3,9	3,6	4,4	4,7	5,0	8,2	8,6	8,6	3819	1712	2144
757-300	3,3	-	2,9	4,7	-	4,7	8,0	-	7,6	2949	-	2272
767-300	4,1	4,1	3,3	3,9	4,2	3,5	8,0	8,3	6,8	5826	2758	5341
767-400	3,2	-	3,1	3,7	-	3,3	6,9	-	6,4	6256	-	6604
777-200	3,7	4,6	3,1	3,7	3,9	3,1	7,4	8,4	6,2	7675	4515	10430
777-300	-	4,2	-	-	3,8	-	-	8,0	-	-	4793	-
787-800	3,4	3,8	-	3,8	3,7	-	7,2	7,5	-	7057	5071	-
787-900	3,1	-	-	3,5	-	-	6,6	-	-	8919	-	-
A319	4,8	3,9	5,7	7,3	6,4	6,5	12,1	10,3	12,2	1384	818	1289
A320	4,1	3,6	4,2	6,1	5,9	5,8	10,2	9,5	10,0	1701	946	1510
A321	-	3,6	4,1	-	5,2	8,8	-	8,8	12,9	-	1258	818
A330-200	-	3,6	3,5	-	4,0	3,1	-	7,6	6,6	-	3239	8815
A330-300	-	3,5	2,8	-	3,9	3,3	-	7,5	6,0	-	3411	6822
Grand total	3,8	3,9	3,6	4,7	4,7	4,6	8,5	8,5	8,2	4718	2698	4510

Estimated cost per seat-kilometer for UnitedAirLines, Inc. by type of aircraft in 2015-2017

	坒					$\begin{aligned} & \frac{0}{8} \\ & \frac{0}{8} \\ & =0 \\ & =0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								
737-700	2015	29,2	1,3	1,9	0,6	0,1	1,3	0,3	5,5	2,2	0,9	0,4	2,4	6,0
737-700	2016	29,4	1,4	1,4	0,6	0,1	1,2	0,3	5,1	2,3	0,9	0,5	2,4	6,0
737-700	2017	29,6	1,6	1,7	0,9	0,0	1,5	0,4	6,0	3,9	1,8	0,9	2,5	9,1
737-800	2015	24,0	0,9	1,5	0,4	0,1	0,8	0,3	4,0	1,7	0,8	0,4	2,4	5,3
737-800	2016	23,7	1,0	1,2	0,4	0,1	0,9	0,3	3,7	1,7	0,8	0,4	2,4	5,3
737-800	2017	23,4	1,1	1,3	0,5	0,0	0,9	0,3	4,1	3,0	1,6	0,9	2,5	7,9
757-200	2015	27,8	0,8	1,8	0,1	0,1	0,9	0,4	4,0	1,3	0,4	0,2	2,4	4,4
757-200	2016	28,5	0,9	1,4	0,1	0,0	0,9	0,4	3,7	1,3	0,4	0,2	2,4	4,3
757-200	2017	28,7	1,0	1,6	0,1	0,0	1,3	0,4	4,4	2,2	0,9	0,5	2,5	6,1
757-300	2015	24,9	0,6	1,6	0,2	0,1	0,5	0,3	3,3	1,3	0,5	0,3	2,4	4,4
757-300	2016	25,7	0,7	1,2	0,0	0,1	0,9	0,4	3,3	1,6	0,6	0,3	2,4	4,9
757-300	2017	26,2	0,8	1,4	0,0	0,1	1,0	0,4	3,7	2,7	1,3	0,7	2,5	7,2
767-400	2015	27,6	0,7	1,7	0,1	0,0	0,5	0,3	3,3	0,9	0,2	0,1	2,4	3,7
767-400	2016	27,6	0,8	1,3	0,1	0,0	0,5	0,3	3,0	1,0	0,2	0,1	2,4	3,8
767-400	2017	27,3	0,9	1,5	0,1	0,0	1,0	0,4	3,9	1,8	0,5	0,3	2,5	5,0
767-300	2015	31,7	0,9	2,0	0,2	0,1	0,8	0,4	4,3	1,1	0,2	0,1	2,4	3,9
767-300	2016	31,4	1,0	1,5	0,1	0,0	0,8	0,4	3,8	1,1	0,3	0,1	2,4	3,9
767-300	2017	30,7	1,1	1,7	0,1	0,0	0,5	0,4	3,8	1,9	0,5	0,3	2,5	5,0
777-200	2015	30,0	0,7	1,9	0,1	0,1	0,8	0,4	4,0	0,9	0,2	0,1	2,4	3,7
777-200	2016	29,9	0,8	1,4	0,1	0,0	0,7	0,4	3,5	1,0	0,2	0,1	2,4	3,7
777-200	2017	29,5	0,8	1,6	0,1	0,0	0,8	0,5	3,9	1,7	0,5	0,2	2,5	4,9
737-900	2015	22,4	0,8	1,4	0,0	0,1	0,6	0,3	3,3	1,6	0,7	0,4	2,4	5,2
737-900	2016	22,5	0,9	1,1	0,0	0,1	0,6	0,3	3,0	1,6	0,8	0,4	2,4	5,2
737-900	2017	22,5	1,0	1,2	0,0	0,0	0,6	0,3	3,2	2,9	1,7	0,9	2,5	7,9
747-400	2015	33,3	0,6	2,1	0,1	0,1	0,7	0,6	4,2	0,8	0,2	0,1	2,4	3,5
747-400	2016	33,4	0,7	1,6	0,1	0,0	0,6	0,8	3,8	0,8	0,2	0,1	2,4	3,4
747-400	2017	33,7	0,7	1,8	0,1	0,0	0,8	1,1	4,6	1,4	0,3	0,2	2,5	4,3
787-800	2015	26,4	1,0	1,7	0,0	0,1	0,5	0,4	3,6	1,0	0,2	0,1	2,4	3,8
787-800	2016	26,7	1,1	1,3	0,0	0,0	0,4	0,4	3,2	1,1	0,2	0,1	2,4	3,8
787-800	2017	26,6	1,2	1,5	0,0	0,0	0,5	0,5	3,7	1,8	0,4	0,2	2,5	5,0
787-900	2015	24,9	0,9	1,5	0,0	0,1	0,3	0,5	3,3	0,8	0,2	0,1	2,4	3,6
787-900	2016	24,9	1,0	1,2	0,0	0,0	0,3	0,4	2,9	0,8	0,2	0,1	2,4	3,4
787-900	2017	24,9	1,1	1,4	0,0	0,0	0,5	0,4	3,4	1,2	0,3	0,2	2,5	4,2
A320	2015	25,6	1,0	1,6	0,3	0,1	0,8	0,3	4,1	2,1	0,9	0,5	2,4	5,9
A320	2016	25,9	1,2	1,2	0,3	0,1	1,0	0,3	4,1	2,3	1,0	0,5	2,4	6,2
A320	2017	25,9	1,3	1,4	0,3	0,1	1,4	0,3	4,8	3,8	2,0	1,1	2,5	9,4
A319	2015	29,3	1,2	1,8	0,1	0,1	1,0	0,5	4,8	2,9	1,1	0,6	2,4	7,1
A319	2016	29,3	1,4	1,4	0,1	0,1	1,3	0,6	4,9	3,2	1,3	0,7	2,4	7,5
A319	2017	29,3	1,6	1,6	0,1	0,1	1,7	0,6	5,7	5,4	2,5	1,3	2,5	11,6
*Wages, materials, spare parts.														

- for 757-200/300, 767-400 and 747-400 at distances of $100-6000 \mathrm{~km}$ - from 7,7 to 9 cents;
- for 777-200, 747-400 and 787-900 at a distance of over 000 km - from 6,4 to 9 cents.
Figure 4 shows the estimated cost of seat-kilometer long-haul aircraft for American Airlines Inc., Delta AirL ines Inc. long-haul aircratt for Am
and United AirLines Inc.
Table 25 shows the results of comparison of the cost of ansportation by type of aircraft for American Airlines Inc, Delta AirLines Inc. and United AirLines Inc. in 2015-2017. The cost per seat kilometer is compared separately for direct flight costs and indirect costs.
Delta AirLines Inc. has the lowest costs.

CONCLUSIONS

The operating result was influenced mainly by the reductio in the cost of jet fuel in 2014. The reduction in the cost of ransportation in 2015-2016 was restrained by the growth of wage costs, costs associated with the acquisition of new aircraft and costs associated with reorganizations.
Since 2017 the cost of transportation has increased due to the rising costs of more expensive jet fuel and the maintenance of the aircraft fleet. The rates of payment for transportation capacities of regional operators, airport and rental payments, and othe production costs have also increased.

The reduction of costs made it possible for US companies not to increase tariffs for passenger transportation in 2015 domestic flights within the United States and Canada, as well as international flights to Europe and Latin America, increased.
Compared to 2015 the cost of seat-kilometer decreased in 2016: for American Airlines Inc. - by 7,7\%; DeltaAirLinesInc. by $16,6 \%$; United AirLines Inc. - by $14,4 \%$. The rate of revenue for seat kilometers also decreased, but the decline was $1,5-2,0$ times smaller. As a result of the fact that revenues exceeded expenditures in the period from 2014 to 2016 the operating profits increased in comparison with the previous period.
In 2017 an increase in transportation costs was not offset by an increase in profitability, which led to the reduction in profitability compared with 2016.
The comparison of statistics of 2017 and 2016 showed that for American Airlines Inc. the cost of seat-km increased by 7%, decreased from 13,0 to $9,6 \%$; for DeltaAirLinesInc. the cost of seat-km increased by 6%, the total profitability of seat-km increased by $2,6 \%$, profitability decreased from 17,5 to $14,8 \%$; for United AirLines Inc., the cost of seat-kilometer increased by $2,76 \%$, the total profitability of seat-km decreased by $0,28 \%$, and profitability decreased from 11,9 to $9,3 \%$.

REFERENCES

1. 100 - to 150 -Seat Large Civil Aircraft from Canada (2018)
/ U.S. International Trade Commission. Publication 4759.
URL: https://uschinatradewar.com/files/2018/02/ITC-
Public-Opinion-Aircraft.pdf.
2. Ackert S. (2012), Basics of Aircraft Market Analysis, Aircraft Monitor // URL: https://www.iata.org/whatwedo workgroups/Documents/Paperless\%20Supply\%20Chai A
3. American Airlines Group Inc. / United States Securities and Exchange Commission, Washington, D.C. 20549, Form 10-K: Annual report pursuant to section 13 or 15(d) of the
securities exchange act of 1934 /For the Fiscal Year Ende December 31, 2017. (2018) // S. Securities and Exchange Commission. URL: https://www.sec.gov/Archives/edgar data/4515/000000620118000009/a10k 123117.htm
4. Bureau of Transportation Statistics ([s.a.]). URL: https:/ www.transtats.bts.gov.
5. Data Library: Aviation ([s.a.]) // Bureau of Transportation Statistics. URL: https://www.transtats.bts.gov/databases asp?Mode_ID=1\&Mode_Desc=Aviation\&Subject_ID2=0.
6. Delta Air Lines, Inc. / United States Securities and Exchange Commission, Washington, D.C. 20549. Form 10-K: Annual report pursuant to section 13 or 15 (d) of the December 31, 2017. (2018) // US. Securities and Exchan Commission URL. Commission. URL:
7. Dunn G. (2017) Analysis: Disruptions interrupt profitable 2017 for airlines // Flightglobal. URL: https://www interrupt-profitable-2017-for-443686
8. Flight Fleets Analyzer. The world's most comprehensive fleets database 2018 // Flightglobal. URL: https:// dashboard.flightglobal.com/app/fleet/\#/analyser/aircraft.
9. https://www.sec.gov/ix?doc=/Archives/edgar/
data/27904/000002790418000006/dal1231201710k.htm
10. Qiu Y. (2005) Can the 787 \& A350 transform the economics of long-haul services? // Aircraft Commerce Aircraft Analysis \& Fleet Planning. N 39. P. 23-30. URL: http://www.aircraft-commerce.com/sample_articles/ sample_articles/fleet_planning_sample.pdf
11. Ruselle. (218) Analys. Capacity between China accelerated growth // Flightglobal URL. https://www. flightglobal.com/news/articles/analysis-airlines-rationalise-fightglobal.cominaty-capacity-451406/.
12. Russell E. (2018) News airlines business strategy analysis: Let's hear it for Delta, 10-years after northwest // Flightglobal. URL: https://www.flightglobal.com/news/articles/analysis-lets-hear-it-for-delta-10-years-after-no-453041/.
13. Russell E. (2018) United growth plan shows no sign of letting up in 2019/Flightglobal. URL: https://www. flightglobal.com/news/articles/united-growth-plan-shows no-sign-of-letting-up-in-20-452695/.
14. Statistical Air Transport Reporting Forms ([s.a.]) // ICAO URL: https://www.icao.int/sustainability/pages/eap-staexcel.aspx.
15. United / United States Securities and Exchange Commission, Washington, D.C. 20549 . Form $10-\mathrm{K}$ Annual report pursuant to section 13 or $15(\mathrm{~d})$ of the securities exchange act of 1934. For the Fiscal Year Ended December 31, 2017. (2018) // U.S. Securities and Exchange Commission. URL:https://www.sec.gov/Archives/edgar/ data/100517/000119312518054235/d471340d10k.htm.
