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MATHEMATICAL 
FORMALIZATION  
OF INSTITUTIONS

The article proposes the way of mathematical formalization of institutions in the framework of  
game-theory approach. The rules are represented by  transpositions of payoffs in payment matrix. Such 
the transitions call the change the structure of game equilibriums. This approach allows separation of 
coordination and distribution aspects of institutions, division institutions into classes and distinguishing 
aggregateс of institutions, which produce identical transformation. Through evolutionary game theory 
formalism it is shown that such parametric management influences the structure of steady states, what 
allows investigation of institutions’ influence on self-organization, in particular, through transformation 
of topology of phase portrait of the system. In accordance with the fact that dynamic with multiple 
steady states is typical for coordination problem as a whole,  an approach suggested of the rules 
formalization appears to have rather broad application.

AlgebrAic formAlizAtion  
of institUtions. discrete model

We begin with an implicit approach. It proposes the 
representation of rules through the consequences of their 
application in matrix games. Consider the case of a symmetric 
game 2x2:

x1, x1 x3, x2

x2, x3 x4, x4
 
We consider that the applying of the rule leads to changes in 

the distribution of gains in the payment matrix. You can represent 
xi, ,i 1 4=  as independent coordinates of an algebraic vector in 
the phase space:
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X will define the state of the system, but the action of the rule 
is the possible transition of the system from one state to another. 
We represent the rule as an operator Rt , and thus we proceed to an 
explicit description of the rules.

Let suppose that in a number of cases within the framework of 
the dynamic problem, in particular, for analyzing equilibrium points 
in pure strategies, the ratio of elements X. is important. That’s why 
it is enough to represent Rt  as a permutation of the components 
of an algebraic vector X.

For x1 > x2 > x4 > x3 we obtain a pure coordination game with 
two Nash equilibriums (coordination problem2) (X1 = X for x1 > 
x2> x4 > x3).

For x2 > x1 > x4 > x3 a “prisoner dilemma” is appeared with 
a single Nash equilibrium that is non-optimal by Pareto (the 
problem of cooperation) (X2 =X for x2 > x1 > x4 > x3).

For x1> x2 > x3 > x4 we are dealing with a game where the 
Nash equilibrium coincides with the Pareto equilibrium (the 
Nash equilibrium is Pareto optimal) (X2 =X for x1 > x2 > x3 > x4).

Formally, the action of the rule can be represented as:
,RX X= lt              (2)

where Rt – is the permutation operator.
We introduce the designation: , then for 

the above-mentioned cases we have:
.           (3)

The rule matrix is:

            (4)

Permutations can be represented as disjoint cycles (in this 
case, as an elementary transposition), from here: ,R 3 413 =t ^ h .

So, the rule R13t  converts a parametrically controlled system 
from state X1 to state X3. The rule representation is a permutation 
operator. You can use the known properties of permutations that 
automatically apply to the rules.

The permutation matrixes are orthogonal. They form a group. 

The reverse matrix is equal to the transposed one. Thus, the rules 
form a group of transformations. In particular the opposite rule 
implies, which cancels this. The representation matrix of the 
inverse rule is transposed with respect to the original one. The 
rule applied the same number of times, which is equal to the 
group order, returns the system to the initial state.

It should be noted that the chosen form of the algebraic 
representation of the rule does not allow us to establish a one-to-one 
correspondence between the rule and its representation. Generally 
speaking, each representation is degenerate: it corresponds to a set 
(class) of rules.

Let consider a permutation, which is characterized by a single 
operator Et . This permutation will correspond to a whole class of 
such rules and under which the action on the payment matrix in 
the form of permutations of payments will leave unchanged the 
relations between payments.

We assume that from the point of view of the influence on the 
equilibrium in the game the action of the institutions leaves the 
ratio of gains unchanged, thereby do not have the coordination 
economic consequences of the game situation and therefore 
are purely distributive. Permutations that are representations of 
the rules leave the constant amount of each player's gains for 
all possible strategies. From the economic point of view, the 
expected payoff (weighted average gain) remains unchanged for 
each participant. Such weighted average gain is equal to one-
fourth of the sum of the gains for any participant. The participants’ 
possibility for choosing each of the possible strategies in the 
game is 0.5. In this context, the action of such rule can be called 
coordination.

Definition. The action of the rule is called coordinating as 
weighted average gain. As a result of its application, the sum 
of each participant’s gains for all possible strategies remains 
unchanged.

The ways of separation the rules effects on coordination and 
distribution may be different and may be several of them. In 
this case, the choice of a particular method of division requires 
an agreement, a convention. The above-mentioned argument 
suggests one way of this separation.

continUoUs Kinetic model

Let it be some event that can take place with the cooperative 
behavior of particular group members.

Then for calculation the expected participants’ gains of 
following cooperative and non-cooperative strategies can be 
written as respectively following relationships:

EU (K) = nx1+ (1 – n) x3;           (5)
EU ( K ) = nx2+ (1– n) x4,          (6)
where EU – is the expected gain of the participants; K – 

cooperative strategy; n – is the share of participants of following 
cooperative strategy; хi – gains in the original payment matrix.

The average (weighted) gain participant is:
EUср = nEU (K) + (1 – n) EU ( K ) = n2 (x1 – x2 – x3 + x4) + n (x3 + 
+x2–2x4) + x4.           (7)

Then, starting from the replication equalization in the 
framework of evolutionary game theory (in fact this equalization 
is reflected in the first equality of relation (8)) of the kinetic 
equalization for n as an independent variable can be written 

introdUction
In previous studies we proposed an approach 

for strategic management based on parametric 
management where the aspiration to achieve 
targeted sustainable states and functioning 
modes is provided by formal institutions 
[Obydenov A.Yu., 2016b; 2017].

The approach, which considers institutions 
as a tool of parametric control, sets the task 
for finding appropriate ways of institutions’ 
mathematical formalization1 through their 
mathematical representation. There appear the 
problem of formal mapping of a set of institutions 
onto a set of their representations. Our proposed 
method of institutions’ mathematical mapping 
can facilitate the institutions’ mathematical 
formalization for the purposes of parametric 
strategic management.

All ways of describing institutions are 
divided into explicit and implicit. In the first 
case, formal components of institutions are 
described, in the second one, quantitative and 
qualitative economic consequences of the 
institutions’ use. The first examples of an explicit 

description of institutions are contained in the 
Herodotus’ treatises (see, example: [Herodotus, 
1972]). One of the modern attempts of explicit 
algebraic formalization of the institution was 
undertaken by V. Tambovtsev (2004).

An implicit form of describing an institution 
is specific for microeconomic analysis. The 
example of such description is analyzed, for 
instance, in the study of D. Bromley [Bromley 
D. W., 1989, p. 111–115]. We used the analytical 
microeconomic approach to determine the 
consequences of institution’s self-regulation 
[Kryuchkova P.V., Obydenov A.Yu., 2003]. The 
game-theoretic way of describing institutions 
is also possible: institutions are taken as fixed 
rules [Shubik M., 1982], represented by stable 
strategies in repeating games [Schotter A., 
1981]. However, such approaches do not allow 
to consider institutions as parameters that 
control the object state (the ratio of gains in the 
payment matrix). The proposed method of both 
explicit and implicit algebraic representation 
of institutions is relevant due to the fact that 
it meets the requirements of the parametric 
approach [A. Obydenov, 2016b; 2017].

1 The mathematical formalization of institutions is understood as the use of formal methods of describing institutions. 2 More information about the problem of coordination and other problems in the interaction of economic actors in the framework of game theory, see: [Schotter A., 1981, p. 22-24].
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[Hofbauer J., Sigmund K., 2003; Smith J. M., 1982; Golman R., 
Page S. E., 2010; Bierman, H.S., Fernandez L, 1998, p. 384–397]:

         (8)

As control parameters we introduce: a = x1 – x2 and b = x3 – x4.
Then in the framework of the simultaneous game we have 

considered above in pure strategies:
• for a > 0, b < 0 there are two Nash equilibriums (pure 

coordination game, coordination problem);
• for a < 0, b < 0 one Nash equilibrium, different from Pareto 

equilibrium (prisoner's dilemma, problem of cooperation);
• for a > 0, b > 0 оone Nash equilibrium, coinciding with the 

Pareto optimal.
And in the framework of the evolutionary game from (8) we get:

.          (9)

As the initial situation before applying the parametric control 
we consider the case  a > 0, b < 0. Then this equalization which is 
solved relatively  has three roots (0, b/(b – a), 1).

If now the equalization
,          (10)

where Q – is the volume of released production by the 
economic entity, which describes the management model of the 
economic entity behavior in the framework of the strong form of 
the rationality bounded hypothesis (Obydenov A. Yu., 2017) and 
normalized to the roots  Q2 = 0,5 and Q3 = 1 (instead of roots  Q2 
= 1 and Q3 = 2), Then instead of this equalization (10) we get:

.        (11)
And if in equalization (9) we put a= 0,5; b = –0,5, then 

we obtain an equalization up to designation that is identical to 
equalization (11):

        (12)
In the phase diagram we obtain two stable points: n1 = 0,  

n3 = 1 and one unstable: n2 = 0,5.

Pic. 2. Phase diagram corresponding to the relation (13)
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In the framework of the strong form’s model hypothesis 
about the bounded rationality of such control corresponds to 
price regulation [Obydenov A.Yu., 2017]. From the point of 
view of game theory with a = 1, b = 0 we have a simultaneous 
game with one Nash equilibrium in pure strategies that can be 
Pareto optimal. Such parametric control corresponds to a rule 
(institution) with a matrix which specified in equalization (4).

Parametric control within the game

Characteristics 
and models for 

comparison
Initial state State after 

parametric control

Parameters а > 0, b < 0 а > 0, b = 0

Discrete (non-
repeating) game

Pure coordination 
game, coordination 
problem, two Nash 
equilibrium

One Nash 
equilibrium that can 
be Pareto optimal

Evolutionary 
game Two steady states One steady state that 

may be desired
Measures of 
parametric 
control in the 
framework of the 
model of a strong 
form of bounded 
rationality

— Price regulation

Based on the identity of equalizations (11) and (12), the 
similarity of the equalization after control (13) we conclude that 
different tasks in formulation terms lead to identical descriptions, 
similar control methods and their results. Earlier, we have already 
noted that similarities between the kinetic equalization in the 
framework of the strong form model of bounded rationality 
(equalization 11) and the equation obtained on the basis of 
evolutionary game theory (equalization 12). Similarities are 
caused by availability of scale advantage and proportionality to 
the benefits of changing the independent variable in both cases. 
In the strong form model of bounded rationality the role of the 
game-theoretic average gain plays a normal profit per unit of 
production. In both cases, there is a multiplicity of stable states. 
All these similarities (see table) allow us to summarize the results 
of the research.

In general, we can talk about the effect of coordination 
[Polterovich V.M., 1999, p. 8–9]. For example, if more people 
follow the mental model, the norm then the less profitable the 
deviation from the norm becomes and the benefit becomes 
greater for everyone who adheres to this model of behavior or 
norm. Some researchers call this effect the “herd effect” [Dixit A. 
K., Nalebuff B. J., 1991].

Thus, the considered nonlinear dynamics with three 
stationary states is generally characteristic of the coordination 
problem and various coordination tasks correspond to such 
dynamics: for example, the evolution of the traffic direction rule 

[Kuzminov Ya. I., Bendukidze KA, Yudkevich MM ., 2006], a 
model of the evolution of the QWERTY rule, the dynamics of 
the neighborhood of the white and African American population 
in American cities [Dixit, Nalebuff, 1991]. Such behavior is 
specified for active (self-organizing) bistable environments [A. 
Loskutov, A. S. Mikhailov, 2007]. In this case, our approach may 
be effective for solving problems of coordination in general.

conclUsion

Institutions can be represented as permutations of gains of 
economic entities within the framework of the game-theoretic 
approach. Such an algebraic formalization of institutions helps to 
investigate the properties of institutions through their controlling 
influence on the economic situation. In particular it will be 
possible to distinguish more strictly between the coordination and 
distribution aspects of the institutions’ functioning, to identify 
situations in the practice of managing when a set of established 
rules leads to an identical transformation and also to combine the 
rules that produce the same action into classes.

The use of the formalism of the evolutionary theory of games 
allows us to move from simultaneous discrete games to parametric 
control in the framework of nonlinear dynamic models. Nonlinear 
dynamics with three stationary states is found in a wide variety 
of models. The proposed method of formalizing institutions can 
be used to solve a sufficiently wide range of tasks, for example, 
to present institutions as parameters that allow you to manage the 
self-organization of economic entities strategically in particular 
by changing the structure of steady states in situations with a 
problem of coordination.
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mathematical formalization of institutions

Thus, in different ways we obtained identical equalizations 
with identical roots. In both cases, there are two stable states that 
create opportunities for parametric control. We know that this 
case (a > 0, b < 0) with continuous Q and n corresponds to a 
simultaneous coordination game in pure strategies with two Nash 
equilibriums. This example illustrates the “popular theorem”: in 
pure strategies of simultaneous play with strict Nash equilibriums 
in the evolutionary game within the dynamic’s replication 
correspond to attractors (asymptotically stable states) [Cressman 
R., 2003].

We put for implementation parametric control in ratio to (12) 
in (9)  a = 1, b = 0 (one Nash equilibrium, Pareto optimal) and we 
obtain the kinetic equalization:

dt
dn n n3 2=- +           (13)

We have one stable state n = 1:


